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THEORY OF STRUCTURES
DETAILED SYLLABUS
1.1 SLOPE AND DEFLECTION OF BEAMS
Deflected shapes / Elastic curves of beams with different support conditions –Definition of Slope and Deflection- Flexural rigidity and Stiffness of beams- Mohr’s Theorems – Area Moment method for slope and deflection of beams – Derivation of expressions for maximum slope and maximum deflection of standard cases by area moment method for cantilever and simply supported beams subjected to symmetrical UDL & point loads – Numerical problems on determination of slopes and deflections at salient points of Cantilevers and Simply supported beams from first principles and by using formulae
1.2 PROPPED CANTILEVERS
Statically determinate and indeterminate Structures- Stable and Unstable Structures- Examples - Degree of Indeterminacy-Concept of Analysis of Indeterminate beams - Definition of Prop –Types of Props- Prop reaction from deflection consideration –  Drawing SF and BM diagrams by area moment method for UDL throughout the span, central and non-central concentrated loads – Propped cantilever with overhang – Point of Contra flexure
2.1 FIXED BEAMS – AREA MOMENT METHOD
Introduction to fixed beam - Advantages –Degree of indeterminacy of fixed beam- Sagging and Hogging bending moments – Determination of fixing end(support) moments(FEM) by Area Moment method – Derivation of Expressions for Standard cases – Fixed beams subjected to symmetrical and unsymmetrical concentrated loads and UDL – Drawing SF and BM diagrams for
Fixed beams with supports at the same level (sinking of supports or supports at different levels are not included) – Points of Contra flexure – Problems- Determination of Slope and Deflection of fixed beams subjected to only symmetrical loads by area moment method – Problems.
2.2 CONTINUOUS BEAMS – THEOREM OF THREE MOMENTS METHOD
Introduction to continuous beams – Degree of indeterminacy of continuous beams with respect to number of spans and types of supports – Simple/Partially fixed/ Fixed supports of beams- General methods of analysis of Indeterminate structures – Clapeyron’s theorem of three moments – Application of Clapeyron’s theorem of three moments for the following cases – Two span beams with simply supported or fixed ends – Two span beams with one end fixed and the other end simply supported – Two span beams with one end simply supported or fixed and other end overhanging –Determination of Reactions at Supports- Application of Three moment equations to Three span Continuous Beams and Propped cantilevers  Problems- Sketching of SFD and BMD for all the above cases.
3.1 CONTINUOUS BEAMS – MOMENT DISTRIBUTION METHOD
Introduction to Carry over factor, Stiffness factor and Distribution factor – Stiffness Ratio or Relative Stiffness- Concept of distribution of un balanced moments at joints - Sign conventions – Application of M-D method to Continuous beams of two / three spans and to Propped cantilever (Maximum three cycles of distribution sufficient) –Finding Support Reactions- Problems - Sketching SFD and BMD for two / three span beams.
3.2 PORTAL FRAMES – MOMENT DISTRIBUTION METHOD
Definition of Frames – Types – Bays and Storey - Sketches of Single/Multi Storey Frames, Single/Multi Bay Frames- Portal Frame – Sway and Non sway Frames- Analysis of Non sway ( Symmetrical) Portal Frames for Joint moments by Moment Distribution Method and drawing BMD only– Deflected shapes of Portal frames under different loading / support conditions


4.1 COLUMNS AND STRUTS
Columns and Struts – Definition – Short and Long columns – End conditions – Equivalent length / Effective length– Slenderness ratio – Axially loaded short column - Axially loaded long column – Euler’s theory of long columns – Derivation of expression for Critical load of Columns with hinged ends – Expressions for other standard cases of end conditions (separate derivations not required) – Problems – Derivation of Rankine’s formula for Crippling load of Columns– Factor of Safety- Safe load on Columns- Simple problems.
4.2 COMBINED BENDING AND DIRECT STRESSES
Direct and Indirect stresses – Combination of stresses – Eccentric loads on Columns – Effects of Eccentric loads / Moments on Short columns – Combined direct and bending stresses – Maximum and Minimum stresses in Sections– Problems – Conditions for no tension – Limit of eccentricity – Middle third rule – Core or Kern for square, rectangular and circular sections – Chimneys subjected to uniform wind pressure –Combined stresses in Chimneys due to Self weight and Wind load- Chimneys of Hollow square and Hollow circular cross sections only – Problem
.   
5.1 MASONRY DAMS
Gravity Dams – Derivation of Expression for maximum and minimum stresses at Base – Stress distribution diagrams – Problems – Factors affecting Stability of masonry dams – Factor of safety- Problems on Stability of Dams– Minimum base width and maximum height of dam for no tension at base – Elementary profile of a dam – Minimum base width of elementary profile for no tension.
5.2 EARTH PRESSURE AND RETAINING WALLS
Definition – Angle of repose /Angle of Internal friction of soil– State of equilibrium of soil – Active and Passive earth pressures – Rankine’s theory of earth pressure – Assumptions – Lateral earth pressure with level back fill / level surcharge (Angular Surcharge Not required) – Earth pressure due to Submerged soils – (Soil retained on vertical back of wall only) – Maximum and minimum stresses at base of Trapezoidal Gravity walls– Stress distribution diagrams – Problems – Stability of earth retaining walls – Problems to check the stability of walls- Minimum base width for no tension.	
.
Text Books:
1. 1. S. Ramamrutham, “Theory of structures”
2. 2. B.C. Punmia, Ashok Jain &Arun Jain,” Theory of structures “,Laxmi Publications, 9th Edition, April1992.
3. 3. S.B. Junnarkar, Mechanics of structures (Vol.II) Charator Publiching,22nd Edition,1997
4. 4. V.N. Vazirani& M.M. Ratwani, “Analysis of structures”
5. 5. R.L. Jindal , “Elementary Theory of Structures”
6. 6. FV. Warnock, “Strength of materials”
7. 7. Madhan Mohan Dass, “ Structural Analysis” PHI Learning Pvt. Ltd., New Delhi.
E-Resources
1. http://www.schandgroup.com
2. http://phindia.com
3. http://ikbooks.com
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)

	


 (
      
QUALITY POLICY
Virudhunagar S. Vellaichamy Nadar Polytechnic College intends to produce a disciplined and quality technocrats by imparting value added technical education and training by reinforcing our bonds with industry, parents, alumni and students and to continuously develop an innovative and excellence in every sphere of education, faculty improvement and all facilities through continual improvement of quality management system with whole human development  
) (
MISSION
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M+ 2Mi (o) + Ml =m
For standard cases:
) o e it
1 Simply supported with UL, % < -
0, 57]_ 304"
P
2 Simply supported with non-centralload, = =2
6oy _ S0xaSX(E-38*
15, e 83125
Substituting in equation ()
Mixd + 2Mq (446) + Mox6 = - [480 + 831,25
AM, +20M, +0=-1311.25 -

Solving equation (1) & (2)

@ 2 4MA+20My=-131125

()x@)=  -aMy-2M; = -240.00
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Substituting in equation (1)
2M,+(-59.51) =-120
M, =-30.25kNm

Final support moments:

M, =-30.25kNm

Mg =-59.51kNm

Mc=0

Reactions:

Consider span AB

Taking moment about B

Mo+ (30x8) x 3= Rax 4 4 Mg
30.25+240=4 R, + 5951

Ry = 52.68kN
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Consider span BC:

Taking moment about B:

Rex6+Mg=Mc+60x25
6Rx59.51=0+150

_(so-s9s1)

5.08kN
©

=0
R+ Ry + Rc = Total load
Rs =Total load - (R, + Rc)
0x4) + 60 - (52.68 + 15.08)
R =112.24kN..
Draw SED & BMI
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Draw BMD for a continuous beam ABCD as shown in fig by theorem of three moments method.

. free BMD
Span AB
=2 22X gim
T e

wi_120x4

= 120kNm

. ‘Support moments:
Since ends A and D are simply supported

Applying theorem of three moments for span AB and BC

AB=I,=6m,BC=1,=5m,

Myl +2M (I ) + Ml
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For standard cases

a3

Simply supported with UDL,

) _wit
%] - from end

w?_20x6®
i

a7
i

Simply supported beam with non-central load

1=5m,a=3m,b=2m,

=ty

Applying theorem of three moments:
0+2 M, (6+5) + Mc x 5 = - [1080 + 840]

22 Mg +5Mc =-1920 —
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Applying theorem of three moments for span BC and CD

For standard cases:
Simply supported beam with non-central load

=5m,a=3m,b=2m,

-

[m( —a')] [mﬂxa(: 4’)] 560

-)]fmm end @

Simply supported with central point load, ["T Wifrom end D

[=

Substituting in equation I

20

S wiz=2x120xa?
W=

5 Mg +2 Mc(5+4) +0 = - [960 +720]

5Ms +18 Mc=-1680 = (2)
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Solving equations (1) and (2)
(2)%22 = 110 M, + 396 M = - 36360
(1)x2 >-110Mg +25Mc = -9600

0 +371Mc=-27360

TS
Mc=-73.75kNm
Substituting value of Mc in equation (3)
5 M, + 18x (73.75) = - 1680

5 M =- 1680 + 1327.5 = - 352.50

3250

My 7050





image98.png
Two mark questions

1. State the degree of indeterminacy of a fixed beam
2.When a beam is called indeterminate?
3. Give two examples of indeten

4. Where the (-ve) moment is maximunm in a two span continuous beam having simple supports at the
ends?

ate beams.

5. State the application of theorem of three moment equation for continuous beams with fixed ends.
Ten mark questions

1. A continuous beam ABCD of length 12m is simply supported by three supports at A, B and C with an
‘equal spacing of Sm. It carries an UDL of intensity 20kN/m over the two spans. There is 30kN load on
the free end, D. Analyse the beam using Clapeyron’s Theorem and draw the SF and BM diagram.

2. A continuous beam ABC is simply supported at Aand Csuch that  AB = 6m and BC = Sm. The
span AB carries an UDL of 20kN/m and the span BC carries a point load of S0kN at its mid - span. Find
the support moments by theorem of three moments. Draw the BMD and SFD.

3. A continuous beam ABC of length 8m has two equal spans. The AB carries an UDL of 20kN/m over
its entire length and span BC carries a point load of 20kN at 3m from B. Draw the BMD and SFD. Apply
theorem of three moments method. End A & C are simply supported.
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4. A continuous beam ABCD of length 9m is fixed at A and simply supported at C. The span AB of
length 6m carries a point load of magnitude 40kN at 2m from A. The span BC of length 3m carries an
uniform throughout its length. Analyse the beam using
three moments and draw the BMD and SFD diagrams.

5. Analyse the continuous beam shown in fig. By the use of Clapeyron’s theorem of three moments.
Draw the BMD.
rew e 20kN/m  100RN ~ 120RN

- |
P 7 1

o = T
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6. Analyse the continuous beam shown in fig. by the use of Clapeyron’s Theorem of three moments.
Take El constants. Draw the BMD.

SRN/m

r *—Ml

7. Determine the support moments for the beam shown in figure by Clapeyron's theorem of three
moments. Draw the bending moment diagram. El is constant.

p il o

om.

8. A continuous beam ABC of length 8m has two equal spans. The span AB carries an UDL of 20kN/m
over its entire length and the span carries a point load of 20kN at 3m from B. Draw SFD and BVID. Take
ends A & C are simply supported. Apply theorem of three moments.

9. A continuous beam ABC of span 10m is fixed at end A and simply supported at C span AB is 4m long.
and carries an UDL of 30kN/m over entire span and span BC carries a point load of 60kN at 2.5m from
8. Determine the support moments by using theorem of three moments. Draw BMD.

10. A continuous Beam ABC is fixed at A and C simply supported at 8 each span AB and BC is 6m. The
span AB carries an UDL of 20kN/m and span BC carries a point load of 60kN at mid - span. Using
theorem of three moments find support moments. Draw SFD and BMD.

11. A continuous beam ABC of uniform section, with span AB as 6m is fixed at A and simply supported
at 8 and C. The beam carries an UDL of 10kN/m and span BC carries an UDL of SkN/m. it also carries a
point load of 20kN at 2m from the end C. Find the support moments using three moment equation.
Draw SFD and BMD.
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3.1 CONTINUOUS BEAMS ~ MOMENT DISTRIBUTION METHOD

Introduction:

The moment distribution method was first introduced by Prof. Hardy cross, an American structural
engineer in 1930. It s also popularly known s Hardy cross method and widely used for the analysis of
all indeterminate structure like continuous beams and portal frames.

Concept:

> The moment distribution method consists of successive approximations using a series of cycles,
each converging towards a precise final result.

> o ally assumed that all the joints are fixed or clamped and then the fixed end moments
(FEM) due to external loads are calculated and those calculated moments at every joint are
checked for equilibrium after releasing the initially introduced clamps by applying equal and
opposite moment to balance a joint and evaluating its effects on opposite joints.
‘The process is repeated till the required accuracy is got.

Fundamental concepts:

1) Beam stiffness
2) Relative stiffness or stiffness ratio
3) Distribution factor

4) Distribution moment

5) Carryover moment

6) Carryover factor
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1). Beam stiffne

Stiffness is a measure of resistance of a structural member for deflection.
(a). Stiffness of a beam hinged at both ends:

Stiffness of a beam hinged at both ends, k = -

(b). Stiffness of a beam hinged at near end and fixed at far end (k):
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‘The ratio of stiffness of various members meeting at a structural joint is known as “relative
stiffness”.
Explanation:

w w/m

For the continuous beam shown in fig, B is the joint where members BA & BC meet.

Stiffness of BA %«ar end Ais fixed)

Stiffness of BC =

Relative stiffness

Stiffness of BA: Stiffness of BC
W m
T T
If the beam is made of same material, then relative stiffness

& wm

(o)
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Dividing by 4,

Relative stiffness

3). Distribution factor:

The ratio of stiffness of a member meeting at a structural joint to the sum of the stiffness of all
members meeting at that joint is known as “distribution factor”.
Forex:

DFu =224
3

4). Distribution moment:
The moment shared by a member at a joint in proportion to its stiffness or in relation to its

distribution factor (D.F) is known as “distribution moment”. It is also known as “balancing moment”.
5). Carr moment:

‘The moment produced at the far end of a beam due to application of a moment at the near end is
called “carryover moment”.




image105.png
i. When the far end is fixed:

R

‘The carry over moment is % the applied moment in the same direction.

ii. When the far end is hinged:

M
No carryover

There s no carry over.When the far end is hinged.
6l.Carry over factor:

‘The ratio of carry over moment at the far end to the applied moment at the near end is known

as carry over factor.
Carry over Moment

Carry over factor
“Applied Moment
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The new sign convention different from conventional sign in followed in the process of moment —
distribution method. After the analysis is over, the end moments are converted back to conventional
bending moments by merely changing the sign to the left of each span.

Based on rotational sense, Clockwise moments are +ve, anticlockwise moments are ~ve as shown in
figure.

Moment distribution method ure

1) Assume all the supports (joints) are fixed.

2) Calculate the fixed end moments (FEM) due to external loads considering each span
as a separate fixed beam.

3) Calculate the stiffness, relative stiffess and hence the distribution factors of

members meeting at each intermediate joint.
Note:

i, D.Fofamember atits fixed end is zero.
D.F of a member at its hinged end is one.
D.F of an overhanging member at its joint is zero.
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bution table

‘4)Prepare a moment — tabular form and enter D.F & F.E.M with proper

igns.
5) Release each clamped support in succes: ibute the unbalanced moment at each joint
‘among the connecting members according to their distribution factor with a sign opposite to the
unbalanced moment. This s called as ‘Balancing the joint’.

6) Do carry over, one half of each distributed moment with the same sign to the farther end of each

span.
Note:

Do carry over to farther fixed ends and intermediate supports only.
Do not do carry over to farther simply supported end and farther overhanging ends.
“This completes one cycle of moment distribution.

7) The carry over moments in step 6 cause new unbalanced moments. Hence perform distribution and
carry over as explained in steps 5&6 to complete the second cycle.
8) Repeat the process of distribution and carryover until the carry over moments become zero or

negligibly small.
Note:

i, The accuracy depends upon the no. of cycles.
Generally 4 or 5 cycles will be sufficient as the unbalanced moments caused by carryover
decrease rapidly.
9) Stop the process with distributor at the intermediate supports when the end supports are simply
supported.
(or)

With carry over to the fixed ends when the supports arefixed.
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10) Arrive at the final moments at each
column.

by finding the algebraic sum of moments in each vertical

11) Change the signs of final moments to the left of the support to get conventional moments.
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1) A continuous beam ABC is fixed at A & C. It is loaded as shown in fig. Calculate the support
moments and draw SFD & BMD. Assume I as constant.

20kN/m 12kN

‘Step 1: Fixed end moments

Considering each span as fixed.
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Span AB:

‘Adopting clockwise as +ve & anticlockwise as ~ve.

Mas 20kN/m Maz
(fodonanp)
A Sm B

My =l X5
=-41.67kNm
Fwi® 20 x5
M = 2 -t o
-+ ar67m
Span BC:
Mac 126N My
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UNIT

1.1 SLOPE AND DEFLECTION OF BEAMS
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‘Step 2: Distribution Factor

(1) Joint: Only one joint: B

Joint | Member Relative stifiness | Tk | Distribution factor
(k)
KaxiKac oy

B BA o
w1 s

ees =6/11
T e . .
(far end Cis fixed) 65 - =R
8C
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(2) Supports (A & C):

A& Care end supports and they are fixed supports. No distribution is done at the fixed ends and D.F

atthe fixed ends are 0.

‘Step 3: Moment distribution table

(support) A (joint) 8 (support) C
Member AB BA BC 8
Distribution factor (D.F) | 0 6/11 5/11 0
Fixed end moments | -4167 +4167 .00 +5.00
(FEM)
I Distribution at B 0.00 1782 485 =] 000
Carry Over (C.O) to A& C

891
Final moments (algebraic | -50.58 +2385 2385 4157
sum)
Conventional BM
(change the sign at left | -50.58 2385 2385 157

ofB&C)
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BMD:

Superpose the free BMD & fixed BMD.
Free BMD:

Span AB
Max free BM at p = 2 = 220X
g g
= +625kNm
Span BC

swi_+12x6
Max free BM at £ = 270 = 255

= 18kNm.

Fixed BMD:
M, =-50.58kNm
M, = - 23.85kNm

=-1.57kNm
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Let Vi, Va& Vcbe the vertical support reactions.

(). Taking moments about B & considering left of 8.
Rux5 =My = (20%5 x 5/2) + Myu =0
5Ry-50.58-250+23.85 =0

Ru=55.35kN(T)

Again taking moments about B & considering right of 8.
Rex6+Mcg+12x 3= My =0
6Rc+1.57+36-2385 =0
Re=2.29kN(T)
From5,=0
Ry+Rs+Rc=20x5-12 =0
5535+ Ry +2.29-100-12=0
Ro=54.36kN

Shear force (Vi):

Vi =+Ry=+5535kN

Va(L)= + Ry =20 x 5 = + 55.35 -100
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=-44.65kN

Vq(R) = +R, 20 x5 + Ry = + 55.35 ~ 100 +54.36
=+9.71kN

Vell) = Vy(R) = + 9.71kN

VelR) = Ve(l) - 12=+9.71-12
=-220kN

Vell) = Ve(R) = - 2.29kN
VlR) =0
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20kN/m 12RN
a i 3m, 3m E
D [3
59 61

a " @ moC
Loading diagram
3335 N o[ + |omt

C|#465 | —_[229
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2) For the continuous beam ABC shown in fig, find the support moments by moment  distribution
method. Draw BMD.

8RN 15kN
2m oy 2m  3m 4m

4m 7m
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Step 1: Fixed end moments.

Considering each span as fixed.
Span AB
RN
Man Msa
(42 | o )
A om 3

A
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11.02kNm

(1). Joint: Only onejoint B
Joint | Member Stiffness Relative stiffness | Tk | Distribution _factor
() (©f)
Kan Kac Kan+ D.Fon =24
] BA [ =
ss1 5e
(since far end A is| * 7 =742 =7
simply supported) | ;. B -
-n oc = 0
=
<=
&
BC
(since far end C is
simply supported)
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(2). End supports (A & C)

A& Care simply supported ends. The distribution factor is 1.

DFg=1; DFa=1

Step 3: Moment ~ distribution table

(support) A (joint) 8 (support) C
Member A8 BA BC c8
Distribution factor(D.F) 1 711 a1 1
Fixed end moments (FEM) 200 +4.00 1469 1102
Release simple supports A & C.
+400  COwB .00 551 COowR 1102
00 +6.00 2020 000
I distribution at B 49.04 4516
Final moments (algebraic sum) | 0.00 +15.04 1504 000
Conventional moments 000 -15.04 1504 000
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1.1INTRODUCTION

1.Beam
Astructural member which is acted upon by a system of external loads at right angles to
its axis is known as beam. Generally, a beam is a horizontal member to support floor
slabs, secondary beams, walls, stairs etc.

2. Classification of structure
In general, the following are two types of structures
a) According to static equilibrium equation
i) Statically determinate structures
ii) Statically indeterminate structures
Further, the above structures are dlassified according to support conditions as
presented below
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1) A continuous beam ABCD is fixed of A, simply supported at B, C & free at D. It is loaded as
shown in fig. Elis constant throughout. Calculate the support moments and draw SFD & BMD.

16kN

Max
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It behaves like a cantilever.
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Moc =0 (free end)

Step 2: Distribution factor (D.F)
Joint B & C.
Joint Member Stiffness Relative  stiffness Ik Distribution  factor
(K 5
K= Kan e Haut e
BA 2 Ksc
= & sa
(since far end A is| * =543 =5/8
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&
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A 8 c
Member AB BA BC 8 ) oC
Distribution factors
0 5/8 38 1 0
Fixed end moments
(FEM) 900 4300 1875 +18.75 -18.00
Release C&C.0toB 038 075 « —
Initial/ Adjusted FEM | 9.00  +3.00 1913
ribution at B

+10.08 46.05
Carry over (To A from | +5.04 - - B
B)
Final moments (2)
(algebraic sum) 396 +13.08 1308 +18.00 -18.00 )
Conventional 396 1308 41308 -18.00 -18.00 0
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A continuous beam ABCD is fixed at A & D. It
moments by moment distribution method. Sketch BMD.

loaded as shown

in fig. Calculate the support

o oom 1268 (w{w,
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Step 1: Fixed end moments (FEM)
Considering each span as fixed.
Span AB

&M kN "3

R
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Step 2: Distribution factors (D.F)
(2). Joints B&C

Joint | Member Stiffness Relative ~ stiffness * Distribution factor
[0} (0F)
Kan' Kac Kant
BA [
s st
B e e =6+8 =
&
Kec == 68
BC et =14
e
&) Kest Keo 746 D
s st 13
c €7
&
Keo = y
o o 76 D.Fp=6/13
==

2) End supports (C, D):
End supports C & D are fixed, » no distribution is done at C & D

5 DFr = 0; DFpc =0





image5.png
b) According to support conditions
1. Cantilever beam
2. simply supported beam
3. Propped cantilever beam
4. Overhanging beam
5. Fixed beam
6. Continuous beam

3. Shear force (S.F)

‘The Shear Force at any section of a beam is the algebric sum of all the forces acting either

left or right of that section. It is denoted by F (or) SF. The symbol of SF is F(or)V(or)SF.
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QUESTIONS

‘Two mark questions:

1)

2)
3)
)

5)
6)
7
8)

Where the (-ve) moment is maximum in  two span continuous beam having simple supports
atthe ends?

Define stiffness factor.

Define distribution factor.

Where the hogging (-ve) moment is maximu in a two span continuous beam, having simple
supports at the ends?

Give examples of indeterminate beams.

State any two methods of analysis of indeterminate structures.

Define Distribution factor and Distribution moment.

What s Carry over factor?

Three mark questions:

1
2)
3)
)

5)

A three span continuous beam with hinged ends carries UDL on its interior panel only. Draw
the shapes of the SF and BM diagrams with proper signs (values need not be mentioned).

How do you analyse  continuous beam by Hardy cross method?

Prove that the stiffness of a simply supported beam of uniform cross section is 3€1/1.

Derive and expression for the stiffness of a beam when it is simply supported at both the
ends.
Derive the expression for the stiffness of a beam when
supported at the other end.

fixed at one end and freely
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Ten mark guestions

1) A continuous beam of ABC, simply supported at A and C, carries an UDL of 20kN/m on AB =
6m and carries a central point load of 120kN on BC = 6m. Take El as constant. Draw SFD and
BMD by moment distribution method.

2) A continuous beam of ABC, fixed at A& C, carries a point load of SkN at 4m from A on the span
AB = 6m and carries an UDL of 1.5kN/m on the span BC = 4m. Take El as constant. Draw SFD
and BMD by moment distribution method.

3) Compute the support moments by Hardy cross method for the two span continuous beam
ABC with simply supported ends. All carries an UDL of 20kN/m. BC carries a point load of 90kN
at 2m from B. lau =, lsc =21,

4) A beam ABCD, 9m long is simply supported at A, B and C, such that the span AB is 3m, span BC
is 4.5m and the overhanging CD is 1.5m. It carries an UDL of 30kN/m in span AB and a point
load of 10kN at the free end. The MI of the span AB is | and in span BC is 2I. Compute the
support moments by moment distribution method.
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5) A continuous beam ABCD has three equal spans AB = BC = CD = 4m. It is simply supported at
the ends A & D. AB carries an UDL of intensity 20kN/m; BC carries a central point load of 40kN;
span CD carries an eccentric point load of 30kN at 1m from D. The flexural rigidity, £l is
constant. Analyse the beam by Moment Distribution method (3 cycles sufficient) and draw the
SF & BM diagram.

6) A continuous beam of ABC, fixed at A & C, carries an UDL of 30kN/m on AB = 6m and carries a
central point load of 180 kN on BC = 6m. Take I as constant. Draw SFD and BMD by moment
distribution method.

7) A continuous beam of ABC, fixed at A and C, carries a point load of SkN at 4m from A on the
span AB = 6m and carries an UDL of 1.5kN/m on the span BC = 4m. Take I as constant. Draw
SFD and BMD by moment distribution method.

8) A two span continuous beam ABC is fixed at support A and simply supported at support C. AB
= 8m; BC = 4m. Span AB carries an UDL of 16kN/m; BC carries a central point load of 8OKN. lg
=15 lsc. Analyse the beam by moment distribution method and draw BMD.

9) Analyse the continuous beam shown in fig. By moment distribution method. Find the support
‘moments and draw the BMD. Assume El as constant.

30kN 26N /m 2RN
1 )
P = =)

C
3m  Im 6m 2m
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3.2 PORTAL FRAMES MOMENT DISTRIBUTION METHOD.

Frames:

A structure built - up of several members (beam over columns) joined together by rigid at their ends
to support the external loads (vertical and horizontal) is called a frame. It is an indeterminate

structure.

Types of frames:

Frames may be classified as
1. Based onbays
Single bay single storey frame (Portal frame)
) Single bay multi - storey frames
i) Frames mult bay frame
2. Based on storey
i) Single storey frame
Multi storey frame
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a) single bay frame:

When a frame consists of single bay
storey as shown in fig.
‘When a frame consists of single bay with multi-storey as shown in fig.

s called single bay frame. It may be of single storey or multi-

b) Multi bay frame:

When a frame consists of two or more bays it is called multi bay frame. It may be of multi bay muiti-
storey frame as shown in fig.

Portal frame:

A frame consisting of beam resting on columns with rigid joints is known as portal frame.

Classification of portal frame:

Portal frame classified as
a) Symmetrical portal frame
b) Unsymmetrical portal frame
) Sway type portal frame
d) Non-sway type portal frame
) Symmetrical portal frame:
A portal frame, in which both the columns are having of the same length, geometry shape,
similar end conditions, moments of inertia, modulus of elasticity and subjected to symmetrical loading
as shown in fig. is called symmetrical portal frame.
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a) Symmetrical portal frame




image140.png
b) Unsymmetrical portal frame:

A portal frame, in which both the columns are not having of the same length, geometry shape,
similar end conditions, moments of inertia, modulus of elasticity and subjected to unsymmetrical
loading as shown in fig. is called unsymmetrical portal frame.

6) Unsymmetrical @ortal frame

©) Sway type portal frame:
In case of unsymmetrical portal frame, the frame deflects horizontally. The frame having horizontal
deflection is called sway type portal frame. In this case sway moments are considered. If the
symmetrical portal frame is loaded asymmetrically sway moments are also considered.
‘These may be classified into

i) Pureswayframe
General sway frame
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4. Bending moment (B.M)
The bending moment at any section of a beam is the algebric sum of all the moments of
the forces acting either left (or) right of that section. It is denoted by B.M(or) M.

1.1.1 Deflected shapes of beam / Elastic line (or) elastic curve of beam

When a beam is subjected to transverse loads it develops shear force and bending
moment at every cross section. Due to transverse load the beam gets deflected. The
deflected configuration of the beam is known as deflected shape.

w

— 8By

i ~
Elastic curve

L I4 -

Fig 1.1 Elastic curve

—=

Where, @8 = Slope at B
SB = Deflection of free end(8)

(a) Elastic line (or) elastic curve of beam

The configuration of the longitudinal axis of the beam after bending takes place due to
loading is called elastic curve. (or)
The edge view of the deflected neutral surface of a beam is known as elastic curve.
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d) Non - sway type portal frame:

In case of symmetrical portal frame with symmetrical load horizontal deflection will not occur, this
frame s called non - sway type portal frame.
This type of portal frame are analysed as in the case of continuous beams.

w

I

I I
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) Non Sway Type Portal frame
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A portal frame ABCD is shown in fig. AB is loaded with central point load of 40kN at 8m and BC is
loaded with an u.d.I of 30 kN/m throughout and CD is loaded with the same central point load of 40kN
at8m. If Elis constant throughout. Calculate the bending moments in the frame and draw the BMD.

[ 30km

6m
EI constant

10§N— 8m Smp— 10N
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Solution:

Stretch out the frame horizontally. The frame is equivalent to a continuous beam as shown in

40KV (J umm:o

fig.

P
A9 sm Tom| sm
8 C
Step 1: Fixed end moments (FEM)
Consider each span as fixed:
Span AB
e 10N

“wi_-s0x8
s s

=-40kNm

+40x8
0
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Step 2: Distribution factors (DF)
(1) joints (8, C)
Joint | Member Relative _stifiness | 3k Distribution _factor
(k) (0F)
[T s Doy A
BA Kee E3
R
s s e =37
&
Kae=2 . £
8C i 68 =14 Difec=E
s
—ap7
Koo Ko 846 DFa=8/12
3
s 10 an
¢ ]
&
K=" 86
& D.Feo=6/14
) Ty
=3/7
(2)End supports (A & D)

End supports A & D are fixed. No distribution is done at A & D.

DR =0
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Step 3: Moment distribution table

A [ c )
Member AB BA BC cB <o bC
Distribution
factors(D.F) 0 £l 47 a7 . 0
(FEM) 4000 +40.00 9000 +90.00 4000 +40.00
1 distribution “21.43 42857 N\ 2857|2143
Carry over (CO] 672 12297 W+14.25 072
Il distribution

4612 +8.17 -8.17
co +3.06 209 P4 +4.09
0 distribution 4175 1234 234
co 4088 117 P17
IV distribution +0.50 +0.67 067
Sums. 3534 +69.80 69.80_+69.80 69.80 2534
Conventional 2534 -69.80 -69.80 -69.80 -69.80 -25.34

moments
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Free BMD (Sagging):
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Max free 8M for span BC =~ =5 —
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Max free BM for span €D = “"' “:"“

=+ 80kNm
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The deflected shape of various types of beam is presented below

w
N w
A B, <
~ O JPB A e —— B
~ Elastic curve R
¢ Rt
Fig 1.2 For a cantilever beam Fig 1.3 For a simply supported beam

A B

Elastic curve

Fig 1.4 For a fixed beam Fig 1.5 For a propped cantilever
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Final BMD:
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Analyse the portal frame shown in fig. by moment distribution method and draw BMD.

[0

20R\-

El not constant: | varying.
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‘The frame is stretched & equivalent continuous beam is drawn.
Step 1: FEM
Span AB
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Mac =+ 10kNm

Step 2: Distribution factors:
1) Joints (8, )
Joint | Member Stiffness Relative  stiffness | Sum | Distrbution
® * )
factor(0F) ()
Ey
o Kec
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BC =4/7
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(2)end supports (4, D)
A&D are hinged.

SDFw=1

DFec=1
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Step 3: Moment distribution table:

A 8 o
Member A8 BA BC 8 [<3) oC
Distribution factors

1 3/7 4/1 4/7 3/ 1
FEM 1000 +1000 3000_+30.00 “1000__+10.00
Release A & D & C.O | +10.00  +5.00
t08,C
Initial/ Adjusted FEM | 000 +15.00 3000 +30.00 1500 000
Idistribution

4643 4857~ 857 643

CO (fom B to C&C 429 14.29
toB)
I distribution 4184 4245 \ 245 184
co 1234 w123
I distribution 4053 +070— -0.70 053
<o 0357035
WV distribution 4015 4020 020 015
Final moments(z)

000 +2395 2395 +23.95 2395 000
Conventional moment | 0,00 -23.95 2395 2395 2395 000
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Free BMD (Sagging)
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Final BMD:
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QUESTIONS
Ten mark Questions
1. Analyse the portal frame shown in figure by moment distribution method and draw the BMD.

20 K/m
¢

2. Analyse the portal frame shown in figure and draw the bending moment diagram by moment
distribution method.

1006
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Fig 1.6 For a continuous beam

1.1.2 Slope and Deflection
(a) Slope (8 or i)

‘The angle made by the tangent at a point on the elastic curve with the horizontal is called
the slope at the point. Itis denoted by 0 (or) i.

(b) Deflection (8 ory)

‘The vertical distance between the original axis to the elastic curve of the beam after loading
is called deflection. Itis denoted by 3 (or) y.
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4.1 COLUMNS AND STRUTS




image162.png
4.1. STRUTS AND COLUMN

Any member of structure subjected to axial compressive force is known as strut. A strut inclined
at 90° to the horizontal (i.e. a vertical strut) is known as column, pillar or stanchion.

4.1.1.DEFINITIONS

(a) Column: A long vertical slender member or bar subjected to an axial compressive
force is known as column.

(b) Strut: A slender member in any position other than vertical subjected to axial
compressive force is known as strut.

(¢) Slenderness ratio: It s the ratio of length of column to the least radius of gyration.
Slenderness ratio has no unit.

Slenderness ratio =Length of column/Least radius of gyration=L/K

It represents the extent to which the column is long and slender .As the slenderness ratio of

a column increases its compressive strength decreases. A slenderness ratio of 200 is.
extremely large for a column.
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(a) Buckling load: The maximum axial compressive load at which the column starts
buckling is known as buckling load or crippling load or critical load. Buckling always
takes place about the axis having least moment of inertia. The value of buckling
load is less than the crushing load.

(b) safe load: It is the load which a column can withstand safely without any
buckling/failure. It is the ratio of buckling load and factor of safety.

safe load=Buckling load/Factor of safety

(€) Buckling factor: Buckling factor is the ratio of equivalent length to the least ra

of gyration.

4.1.2. CLASSIFICATION OF COLUMNS

Depending upon the length to diameter ratio or slenderness ratio, a column can be
calssified as:

(a) Short column: If the lenth of a column is less than 8 times its least lateral
dimension then the column is said to be a short column.If the slenderness ratio
of a column is less than 32, then the column is also called a shortcolumn.In short
column, buckling is negligible and the column fails due to direct crushing only.
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(b) Medium size column: A column is said to be medium size column if its length
varying from 8 times to 30 times of its least lateral dimension. If the slenderness
ratio of a column lies between 32 to 120, then the column is also said to be
‘medium size or intermediate column. In these column, both buckling as well as
direct stresses are of significant value. In the design of medium size column, both
the stresses are taken into account.

(<) Long column: A column is said to be long column if its length is more than 30
times the least lateral dimension or the slenderness ratio of the column is more
than 120. In this type of column, direct compressive stress is very small as
compared to buckling stress, i.e., the failure is only due to buckling stress. Hence,
long columns are designed to withstand buckling stresses.

4.1.3. FAILURE OF COLUMN

‘The failure of a column takes place due to any of the following stresses:
i.  Direct compressive stress
ii.  Buckling stress
i Combination of direct and buckling stresses

(A)Failure of short column

Consider a short column of cross-sectional area
then

subjected axial compressive load p,

Compressive stress = 1
If the compressive load is gradually increased, a stage will be reached at which the column
will be at  point of failure by crushing. The stress inducted in the column corresponding to

this load is called crushing stress and the load is known as crushing load (g,




image165.png
Crushing
Cross sectionarea A

Crushing stress =

(8) Failure of a long column:

Figure 4.1 shows a long column of cross-sectional area ‘A’ subjected to an axial compressive
load p.n case of long column, the failure is due to crushing as well as buckling (bending).
‘The load at which the column just buckles is known as buckling load. The buckling load is
less than the crushing load.
Let, p = Axial compressive load

1= length of the column

A= Cross-sectional area

& = Maximum bending at the centre of the column

2= Section modulus in the axis of bending

Direct stress, ~ 04=

sl

Bending stress, g, . =
Stresses at the mid-section of the column are:
Maximum Stress, .. 04 .0 3
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Maximum stress, Omin = O - 0d
If the maximun stress is more than crushing stress, the column will fai. In long columns,
direct compressive stress is negligible as compared to buckling stress. Hence, very long
columns are subjected to buckling stresses only.

4.1.4. END CONDITIONS OF COLUMN

‘The following end conditions of columns are important:
(a) Both the ends hinged [Fig. 4.2(1)]
(b) Both the ends fixed [Fig. 4.2(ii]
(c) One end fixed and other end hinged [Fig.4.2(ii)]
(d) One end fixed and other free [Fig.4.2(iv)]

r P 3 P

R :
‘ 1

x/‘

lp P 3
i) One end fixed and (i) Both end fixed (1) One end fixed and other hinged
other free

() Both ends h

Fig.4.2
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4.1.5 EQUIVALENT LENGTH OR EFFECTIVE LENGTH

Equivalent length is the length of the long column which is actually involved in bending.
Equivalent length of a column is also defined as the distance between adjacent point of
inflexion*.The equivalent length of a column is obtained by multiplying it with some
constant factor ‘C'. The constant factor ‘C’ depends on end conditions of the column. If ¢is
the actual length of a column, then its equivalent length, L=cx ¢

Hence, in case of column with:

(a) Both ends fixed, equivalent length,
(b) Both ends hinged, L=t

2
z

(€) One end fixed and other end free, L= 7=

(d) One end fixed and other hinged, L =
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Table 4.1. Equivalent Length

S.NO. | End conditions of | Relation _between | Value of | Crippling load in terms
column effective length (L) | factor‘C’ | of
and actual length (1) Actual | Effective
length | length
1 Both ends fixed T [ [ ptl
3 — |
2. Both ends hinged | L=1 1 =
=
3 One end fixed and | L=20 2 PE
other end free B
a. One end fixed and T P
other hinged V2 “
4.2.0. SLENDERNESS RATIO

We have already discussed in art 22.11 that the euler’s formula for the crippling load

21

s

We know that the buckling of a column under the crippling load will take place about the
axis of least resistance. Now substituting | = Ak? (where A is the area and K is the least radius
of gyration of the section) in the above equation,

TREAKY) n2EA

Ty
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wheres2 is known as slenderness ratio. Thus slenderness ratio is defined as ratio of
equivalent (or unsupported ) length of column to the least radius of gyration of the section.
slenderness ratio does not have any units.

Note : It may be noted that the formula for crippling load, in the previous articles, have
been derived on the assumption the slenderness ratio = is so large, that the failure of the
column occurs only due to bending, the effect of direct stress (i.e., ) being negligible.

4.2.1.AXIALLY LOADED SHORT COLUMN

If the line of action of load coincides with the axis of the column, the column is called an
axially loaded column. The load passes through the Centroid of the column section. They
are also known as centrally loaded columns or concentrically loaded columns.

Consider a short column subjected to axial compression P.
P/A

If the compression s increased, the column fails by crushing. The load corresponding to this
crushingis called crushing load. Al short columns fail by crushing.

Compressive stress, o, = Load/Arez

Crushing load, Pc= 0. * A
Where o= Ultimate crushing stress in N/mm?
A= Area of cross section of the column in mm?
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1.1.3 Flexural rigidity and Stiffness of beams
(a) Flexural rigidity (1)

‘The product of values of young’s modulus and MI about Neutral axis is called flexural
rigidity.

Flexural rigidity = Young’s modulus x M.I
=ExI=El

The product of El is expressed in N.mm? (or) kN.m?
(b) tiffness

Stiffness of a beam is the property of resistance against rotation and deflection.
moment required to produce unit rotation of slope is called stiffness of the beam.

depends upon the end conditions, flexural rigidity and span of the beam.

1. Stiffness factor, k = # —> for fixed ends

2. Stiffness factor, k = # —» for simply supported ends

The
Itis
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2. AXIALLY LOADES LONG COLUMN

Consider a long slender column, perfectly straight, subject to axial compression (P) as
shown in fig 4.1.1. For small values of P, the column remains straight. When the axial load P
is gradually increased the column starts deflecting laterally (Buckle). The column will be
under stable equilibrium upto a particular stage and lateral deflection disappear on the
removal of load (P). Further increase in load beyond this stage affect the stability of the
column and lead to failure by lateral buckling.

‘The axial load just sufficient to keep the column in stable equilibrium with slight deflected
shape is called BUCKLING LOAD or CRIPPLING LOAD or CRITICAL LOAD. The lateral
deflection of the column is known as BUCKLING or (lateral bending)

At buckling load the stress in the column material will be well with in the proportional limit.
Depending upon the flexural rigidity (1), the column will buckle about a plane of least
moment of inertia of the section in a direction perpendicular to the axis. Hence stability is
‘more important than strength in the design of columns.

4.2.3. COMPARISONS BETWEEN AXIALLY LOADED SHORT COLUMN AND LONG COLUMN

S.No. | Axially loaded short column ‘Axially loaded long column
1| Short column has slenderness ratio | Long column has slenderness ratio greater
less than 12 than 12
2| Failure is due to crushing Failure is due to buckling
3| The cross section of short column | The cross section of long column s less
is more compared to short column
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4.2.4. FORMULAE FOR FINDING BUCKLING LOAD IN COLUMNS
‘The following formulae are used to find out buckling load in columns:
(a) Euler’s formula
(b) Rankine Gordon formula
() Johnson's parabolic formula
(d) 15 formula
(e) straight line formula.
4.2.5. ASSUMPTIONS MADE IN THE EULER’S THERY
Euler’s formula for crippling load is based on the following assumptions:
(€) The section of the column is uniform throughout its length.
(f) The column s initially perfectly straight and axially loaded.
(g) The column material is homogeneous and sotropic.
(h) The column material is perfectly elastic and obeys Hooke’s law.
(i) The length of the column is very large as compared to the lateral dimensions.
(j) The self-weight of the column is neglected.
(k) The direct stress is very small as compared to bending stress.
(1) The column will fail by buckling alone.
sign Convention for Bending Moment: A bending moment s taken as positive if it bends
the column with its convexity towards the actual centre line as shown in figure 4.3(i).

A bending moment is taken as negative if it bends the column with its concavity towards
the actual centre line, as shown in Fig. 4.3((i).
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4.2.6. COLUMN WITH BOTH ENDS HINGED OR PINNED

Consider a column AB of length ‘I hinged at both its ends A and B ana carries an axial
crippling load i.e., load at which the column just buckles, as shown in fig. 4.4.
Consider a section X-X at a distance x from B.
Let the deflection at XX be y.
Bending moment at XX due to p,
M=-py
[BM is —ve as per the sim convention]
We know,
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Solution of this differential equation is given by
y = A cosKx+B sin Kx

where
Aand B are constants

y
o B) 50 )

y=0, x=0Type equation here.

AtB,

& A=0A=mr?

TR

Fig.4.5
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or





image176.png
Squaring both sides we get,

P
El 2
1
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EXAMPLE 4.1. A mild steel tube 4 m long, 30 mm internal diameter and 4 mm thick is
used as a strut. Determine the safe compressive loads when this strut is used with the
following end conditions :

() Both ends are hinged
(i) Both ends are fixed
‘Take the factor of safety = 3 and E = 2 x 10° N/mm.

Solution:

Given:

Actual length, ¢ =4m=4000mm
Internal diameter, di =30 mm
Thickness, t =4mm

 Outer diameter,  do = Internal diameter + 2t
=30+2x4=38mm
Moment of inertia,

(d§-df)

e
% (38'-30%)
=2 (2085136 - 810000)
=62593.09 mm*

Let the crippling load be P.

(i) When both ends are hinged

Effective length,

= 4000 m
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Crippling load,

2 X 2X 105 X 6259309
@000
Cripplingload__772211
Factorof safety 3

=2574.04 N Ans.
(ii) When both ends are fixed
Effective length,

=772211N

Safe load =

L

Crippling load,

26l
=

X2X10° X 6259309
20007

=30875N
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Safe load

=10291.67N  Ans.

EXAMPLE 4.2. Find the maximum length of a solid mild steel rod having diameter 40 mm
used as a column with both ends fixed to carry a load of 20 KN. Allow factor of safety = 3.
Take E=2x105 N/mm2.

Solution:
Given :
Diameter, d =40 mm
Safe load =20KN
FOS =3
E =2X10°N/mm

Moment of inertia,

Tt o T a0t
Zd*=Z(40)

=125663.71 mm"
Crippling load,
P = Safeload x FOS
=20X3=60KN =60000N
Let the effective length be L and actual length be [

2
A
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22 X2 X105 X 12566371
60000,

17 =4134170.35

L=V4T34170.2 = 2033.27 mm

For a column with both end fixed

2

L= ‘;orx = Actual length = 2L

=2X2033.26 = 4066.54 mm
(=41m  Ans.

EXAMPLE 4.3. A solid round bar 4 m long and 50 mm in diameter was found to extend 4.6
mm under a tensile load of 50 KN. This bar is used as a strut with both ends hinged.
Determine the buckling load for the bar and also the safe load taking factor of safety as 4.
Solution.

Given:

Actual length of bar, ¢
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1.1.3 (b) Method of finding the slope and deflection

‘The following are the various methods for slope and deflection.
1. Mohr’s area moment method

2. Double integration method
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Changeinlength, ~ dt =4.6mm

Tensile load, 3
FOS
Diameterof bar, ~ d =50 mm

Area of cross-section of bar,

= ; X (50)? = 1963.5 mm?

Modulus of elasticity,

stress _ 2546

Strain 000115

Moment of inertia,

Zat= Z(50)*

=306796.16 mm*
Effective length,

4000 mm

Let P. be the buckling load

We know,
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%X 2.2 X10* X306796.16
(s000)2

_ s66X101

—=41625N  Ans.
T6x10

EXAMPLE 4.4, Find the safe load for an elastic column made of a solid steel rod of dia 20
‘mm and length 1.5 mm. It is fixed at both ends. The factor of safety is 2.5 and modulus of
elasticity for the rod is 210 GPa.
Solution.
Given:

Diameter, d =20 mm

Length, 1.5 mm = 1500 mm
FOS =25
E =210 GPa = 210 x 10° Pa = 210 x 10° N/m*

210X 10°N/mm*

Moment of inertia,
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|2 mtt_n@o)

o
Column is fixed at both the ends

=7853.98 mm*

- Effective length,
1500

2772

750 mm

Let P be the crippling load,
We know by Euler’s formula

Crippling load

6 x210X10x
F (750

Crippling load _ 2893919

Safe load =<CiERng oad _ 2099010

Fos 25

11575.68N  Ans.
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4.2.8. RANKINE'S FORMULA

Euler's formula gives correct result only for very long column which fails by buckling. Short
column fails by crushing. In practice we come across struts and columns which are neither
t0o short nor long. The failure of the column will be due to the combined effect of crushing
and buckling. Rankine devised an empirical formula based on experiments for the collapse
load which is applicable for both short and long columns.

Let P = Crippling load by Rankine’s formula
Pc = Crushing load or compressive load

P= Crippling load by Euler’s formula.

‘Then the Rankine’s formula i given by

111
FRTR

Where  Pc.oxA

Compressive stress (yield stress)
And

261
3

Pe=

A= cross-sectional area of column

We have,
1

11
P PR P
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1_PesPc

P PcPe

ing numerator and denominator of RHS by P

P ocA 2EL
P —z - P = g.Aand P,
[ e
e YRTE
oA oca
oALZ e
vrae U
oA
B
1+a(f)

L .
where £ =Slenderness ratio

@ = Rankine’s constant = -2
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Table 4.2.Rankine’s constants (a)

SNo [ Material [0 N/ |a=—=
m? =E
1 | Mildsteel |320 1
7500
1
2. |castiron |550 1600
1
3. | wrought |250 9000
iron 1
4 | e 50 750





image187.png
4.3.0. FACTOR OF SAFETY
Factor of safety is defined as the ratio between crippling load and safe load.

Crippls d
Safe load

Factor of safety =

‘The values of factor of safety in engineering design varies from 3 and 12.
4.3.1.5AFE LOAD

Factor of safety is defined as the ratio between crippling load and safe load.

Crippling load

Safeload = F o r of safety
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EXAMPLE .4.12. An ISMB 250 Rolled steel joist is to be used as a column 4.0 m long with
both ends fixed. Find the safe load on the column allowing a factor of safety of 3. Take o

by
=320 N/mm2 and @ =

Properties of column section are:
A=4755 mm’
Iy "5.1316 x 10’ mm*
1,,"3.345 x10° mm"

Solution:

Given :
Actual length of column,
=4.0m=4000 mm
FOS=35

0 =320 N/mm*
I,
=T
A=4755 mm®

Least moment of inertia,
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1=3.345 X 10°mm*
Effective length of column,

E- = un
T

Rankine’s crippling load is given by
320 x 4755

(G

s20x4755

20X55 _ gasas.as N

76

Cripplingload _ ge4sas.as
Fos 3

=288181.82 N~ 288.18 KN  Ans.

Safe load =
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EXAMPLE.4.13. A hollow cast iron column of external diameter 250 mm and internal
diameter 200 mm is 8 m long with one end fixed and the other end hinged. Find the safe
Ioad with a factor of safety of 5. Take gc =550 N/mm2 and a ===
Solution.
Given :

Actual length of column,
8 m = 8000 mm

Outer diameter, 250 mm

Inner diameter, d =200 mm

FOS
Compressive stress,

& =550 N/mm”

Rankine’s constant,
1

=i
When one end fixed and other end hinged
Effective length of column,

«_sooo

by
Least moment of inertia,

; (0*"d*) :7(250"200‘)

=5656.85 mm

=Zx2.306x10°= 1132 x10° mm"
Cross-sectional area,

A —(D “d) = (zwl'zoo’)




image11.png
3. Macaulay’s method
4. strain energy method
5. Conjugate beam method

1.1.4 Area moment method

It is a simple method, Mohr’s Theorem | & Ii are used for the determination of slope and

deflection of beams at any section with reference to the B.M.D., hence it is called as Mohr's
area moment method.

1.1.4(a) Mohr’s Theorem -1

It states that the change of slope between any two points on an elastic curve is equal to the
area of BMD between the two points divided by flexural rigidity.

4
Slope= 6= —
P El
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= Zx22500 = 17671.46 mm?
o

AK?
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T_ [
= /640581 = 80.04

Rankine’s crippling load is given by

3

Safe loa

ocA____ssox17671as

Tea®

9719303

=2359054.1N

- rippling load _ 23550541
Fos s

47181083 N

7181 KN Ans.

EXAMPLE.4.14. Find the Eulers crippling load for a hollow cylindrical steel column of

external diameter and 2.5mm thick. Take length of the column as 2.3m and hinged

atits both ends. Take E=205 GPa.  Also determine crippling load by Rankine’s formula
using constants as 335MPa and ——

7ean

Solution.

Given:
External diameter D =38mm
‘Thickness, 25mm
Internal diameter d =33mm (38-2x2.5)
Length of the column ¢ =23m
Yield stress gc =335 MPa =335 N/mm”*
Rankine’s Constant (@)= =

=)
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Euler’s Crippling load

(380 -33Y
=14.05x10°Tmm*

'¢ =1=23x10°mm

Euler's Crippling load,

_ n2(205x10% ) x (14.05 x10%
= (23x10%)2

Rankine's Crippling load
A=F(D*—d?)

Pe: 16880 N =16.88 kN
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A=2(38%-332)

= 88.757mm”

=17169N=17.17 kN
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4.2. COMBINED BENDING AND DIRECT STRESS
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IRECT STRESS

1f a column s loaded with axial load P, then the column is subjected to direct stress and is
given by
, where A is the cross-sectional area of the columnFigure 4.11 shows a direct stress.

COMBINED DIRECT AND BENDING STRESS

Figure 4.12 shows a column subjected to a load Pwhose line of action is at a distance ‘¢’
from the axis of the column. Apply two equal and opposite forces along the axis of the
column as shown in Fig. 4.12(ii). Now the three forces acting on the column

can be converted into two systems.

(i) An axial force P which will produce direct stress in the column, |
as shown in Fig. 4.12 (iii)

(ii) Two equal and opposite forces forming a couple. The arm of the couple is
‘e”. The moment of the couple will be Pxe and will produce bending stress
(v} in the column [Fig. 4.12 (iv)].

S0 a column Subjected to eccentric loading, is subjected to both direct and
bending stress.

g
=B
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Figd.11
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Figd.12
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Considered a column of widtl

Fig4.13.

Cross-sectional area, A=bxd.
Direct stress,

and depth ‘d’ subjected to an eccentric load P as shown in

Due to eccentricity of load, the column is subjected to B.M = P x e. this B.M. will produce
bending stress in the column. )_e °

Bending stress, oy
Where

1
Z = section modulus = ¢ ‘

(As the eccentricitppé the load is from Y-Y axis,
Ab
ob=te.
@
The resultan® stress at any point is the sum of direct and
‘bending stress at that point.
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Figd.13




image12.png
1.1.4 (a) Mohr’s Theorem

It states that the change of slope between any two points on an elastic curve is equal to the
area of BMD between the two points divided by flexural rigidity.

4

E

(b) Mohr's Theorem — 1I

It states that the intercept taken on a vertical reference line of tangents at any two points
on an elastic curve is equal to the moment area of BMD between these points about the
reference line divided by flexural rigidity.

Slope =

Ax _ geflection.
EI
Where, A = Netareaof BMD
AxX = Net moment area of BMD.

El Flexural rigidity
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Totalstress = 0uz0b= 2y

‘The + veand-vesign depends upon the position of the load. The stress will be maximum at
the face BC as the load is near to BC. The stress will be minimum at the face AD as the load
is away from AD.

S always compressive. If Orls +Ve then it is compressive and if the value of 6 mnis —ve,
then it is ter

ECENTRIC LOAD

A load whose line of action passes through the center of gravity of the section, then the
load is said to be axial load. A load whose line of action does not passes through the center
of gravity of the section, then the load is called eccentric load.

Figure 4.14 (i) shows a section of column loaded with axial load P and Fig. 4.14 (ii) shows a
section of column loaded with eccentric load. The distance between the line of action of
load and axis of the column (passing through C.G.) is the eccentricity ‘e’ of the load. The
eccentricity of a load may be about one axis or about both the axes.




image202.png
] pton
st
¥ ,,,«,"f,,

|

A Eoenicioad

4.2.3. LIMIT OF ECCENTRICITY

If a column is eccentrically loaded, then both direct and bending stress is simultaneously
developed. If the direct stress (ad) is more than bending stress (ob), the stress in the section
all through will be compressive. If the bending stress is more than direct stress, then there
will be tensile stress. As the concrete columns are weak in tension, load should be applied in
such a way that there is no tensile stress in the column. To avoid tensile stress, the bending
stress (ob) should be less than or equal to direct stress (od).

Hence,
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“This shows that for tension in the column, eccentricity should be less than or equal to &

4.2.4. LIMIT OF ECCENTRICITY FOR A RECTANGULAR SECTION.
Let the section be

Figure 4.15 shows a rectangular section of width b’ and depth
subjected to a load at a distance e’, along x - x axis, from y - y axis. The bending will take

place along y-yaxis.
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Section modulus, Z =

Area of cross section, A = bd.

z
For no tension, e

ab?
ec
“6bd

b y
eg Figd.15

‘This means that for no tension, load can be applied on both sides of y-y at a distance b/6 on
X-x axis as shown in Fig. 4.15.

Therefore, for no tension, the load must be placed wlth-inE+ E: i.e., middle third of the

width of section.

similarly, for no tension, the load can be placed on y-y axis, on both sides of x-x axis, with in
‘middle third of depth ie., d/3.
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If we join the four points on x-x and y-y axis, we get a rhombus. This rhombus is known as.
core or kernel as shown in Fig. 4.15. Thus, core or Kernel of the section is the area in which
any eccentric load, if placed will not produce any tension in the section.

(ii) Limit of eccentricity for a circular section
Figure 4.16 shows a circular section of diameter'd'.
Let the section be subjected to a load at a distance ‘e’ from centroid on x-x-axis

Y =d/2

by
Section modulus, Z =

Y
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Figd.16




image207.png
Area of cross-section, A = -

For no tension

‘This means that for no tension, the load can be eccentric, on either sides of centroid d/8
distance.

4 Diameterof core =2x¢ =d/a

Thus, for no tension in a circular section, the load must be placed within middle fourth of
the section.
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4.2.6. EFFECT OF ECCENTRIC LOADING ON SHORT COLUMN

Consider a short column of uniform cross section b x d subjected to an eccentric load ‘P*
acting on XX axis at an eccentricity ‘e’ from the Centroid of the section shown in fig 4.18

‘The axial load produces uniform direct compressive stress throughout the cross section. The
moment due to couple produces bending stress. Figd.18

Direct compressive stress, o, = Load/Area
=P/A

Bending moment,
M = load * eccentricity
M=p*e

Bending stress,

M/I*y

Where, | = moment of inertia about yy axis = db3/12 ¥
¥ = distance of the fibre YY axis, ymax= b/2
20y = £ 12*Pe/db’ * b/2 = £ 6Pe/db”

Combined direct and bending stress

‘The total stress or resultant stress due to eccentric loading at any section is the algebraic
sum of direct stress and bending stress.

0= 0¢t 0= P/AE M"Y/l
‘Maximum and minimum stresses

“The maximum and minimum stresses are in the extreme fibres
Oman =04+ 0y = P/AE MY/l
Omn=0a- G = P/A—M*y/I





image209.png
for a rectangular column section,
A =b*dandm=P*e
Omax =0t 0y =P/A+6M/db” = P/A+ 6Pe/db®
=P/A+6 Pe/A*b = P/A [1+ 6e/b]
Onox = P/A[1+60/b]
Omin =04~ Ov= P/A— 6 Pe/A x b =P/A[1 - 6e/b]
Omin = P/A[1-6e/b]

Maximum and minimun stress for a rectangular section,
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Gox = P/A[L+ 6e/b]

Omin= P/A[1+6e/b]
When 0q value is positive, there is compressive stress.
When 0n value is negative, there is tensile stress.
When 0,,,, value is zero, there is no tension.

4.2.7. MIDDLE THIRD RULE

To avoid tension, the limiting value of eccentricity on either side of the geometric axis is b/6
and d/6 for rectangular sections and a/6 for square sections. This means if the load lies in
the middle third portion, the section will be completely in compression.

‘The middle third rule states that, “when the point of application of the load lies within the
middle third of the section, then the stress will be of compressive in nature throughout the
section and there will be no tension anywhere in the section.

4.2.8. CHIMINEYS SUBJECTED TO UNIFORM WIND PRESSURE

Tall structures like chimneys, water tanks, towers are subjected to horizontal wind pressure
on one side. It causes bending moment at the base. The bending moment reduces bending
stress. Also the chimney has self-weighted and it produces direct or axial compressive stress
at the base. The resultant stress at any section at the base of the chimney is the algebraic
sum of bending stress due to wind pressure and axial stress due to self-weight.

Chimney may be square or circular in cross section. Sometimes the chimney may be tapered
from large section at the bottom to a small section at the top.
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Problem

A cantilever beam 2m span 200mm wide and 400mm deep. Carries a point load of 10 kN
at free end. Find the max. slope and deflection by area moment method take

E=2.0x10° N/mm’.

Given data:

By area moment method

span [ m = 2000 mm

Wide b 00mm

Depth d  =400mm

E .0 x10° N/mm’
Solution
()Moment of inertia (1)
s 9
ML () bd” _ 200x400°

12 12
(i) Bending Moment
W.( =10x2=20kN.m
Draw BMD as shown in fig.1.9
A = area of BMD

A =Llxbxn
2

A = % X220 = 20 kNm” = 20x10° Nmm®

= Centroid of BMD draw B

x % X2=1.33m=1.33x 10’ mm

=1.067 x 10°mm*

Ly
1018
A B
2m ey
20 kN.m M
23051 33y

BMD
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The direct stress or axial stress, 0s= W/A
‘The bending stress, 0= M/I*y (or) M/Z
Where,
W is the weight of chimney
Als the area of cross section
M s the bending moment due to horizontal wind pressure
1is the moment of inertia about YY axis
Y is the extreme fibre distance
Zis the section modulus, Z = I/y

‘The horizontal wind force on a unit area of a vertical plane is known as wind pressure. If the
area exposed to wind pressure is curved, the magnitude of the force will be less than, when
the area s a flat surface. The reduction factor ‘K’ is called as coefficient of wind resistance.
Its value varies from 0.5 to 0.75. For cylindrical shafts k = 2/3, unless stated otherwise for
square and rectangular chimney k = 1.

The total horizontal wind pressure, P = k*Po*A,
Where,
P = Total horizontal wind pressure
K = Coefficient of wind pressure
Py = Horizontal intensity of wind pressure
A, = Projected area on which wind acts.
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Maximum and minimum stress in square chimney
Consider a hollow square chimney of outer dimension B * B and inner dimensions b * b
subjected to a horizontal wind pressure of intensity Po KN/m?.

Let h be the height of the chimney.
Y be the unit weight of masonry.
Cross sectional area of chimney, = Ay - Ay
A=(8*B)-(b*b)
Self-weight of chimney,
W = unit weight of masonry * Area * Height
W =yAh
. Direct stress, a4 = W/A
Moment of inertia, |=1/12 [8*b]
Extreme fibre density, y = B/2
Projected area, A, =Bh
Total wind pressure, P = Coefficient of wind resistance
*Intensity * wind pressure * projected area
P=k*Po*A,
‘This pressure acts at h/2 from the base.
- Bending moment, M = P*h/2.
= Bending stress, oy =M/I*y
Total stress 0= 04+ 0y

[

5
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Maximum stress,  Omax = Out Op

Minimum stress,  Oma= 04~ Ob

If the total stress is positive, it is compressive.
If the total stress is negative, it i tensilg
Maximum and minimum stress in circular chimney

Consider a hollow circular chimney of outer diameter ‘D’ and inner
diameter‘d’ subjected to a horizontal wind pressure of intensity Po KN/m>.

Let h be the height of the chimney.
¥ be the unit weight of masonry.
Cross sectional area of chimney,
A= Ao At
/4 [0* - dY)
Self-weight of chimney,
W = Unit weight of masonry * area* Height
YAh
irect stress,
og=w/A
Moment of inertia,
1=m/64[D"-d*]
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Extreme fibre distance,
y=0/2
Projected Area,
A, =Dh
‘Total wind pressure, P= Coefficient of wind resistance * intensity of
wind pressure * Projected area

P=Kk*Po*A,

“This pressure acts at h/2 distance from the base.
K =2/3 for circular sections.

Bending moment, M =P * h/2
= Bending stress, 0y = M/I *y

Total stress, 0= 04 £ 0

Maximum stress, Opax = O + 05

Maximum Stress, O, =0 Oy
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EXAMPLE.4.17. A rectangular column of width 200 mm and of thickness 150 mm carries a
point load of 240 KN at an eccentricity of 10 mm in a plane bisecting the thickness. Find

‘the maximum and minimum stresses in the section.

Solution:
Given:
Point load, P =240 KN = 240000 N
Eccentricity, e=10mm
Width, b=200mm
Thickness, d=150mm
Area A=bd = 200 x 150 = 30000 mm*

Let Oma@ndopiquse the maximum and minimum stress in the
section

Using the relation

240000
30000

6310
200

o (142 (1+

=8(1+0.3) = 10.4 N/mm? (comp)

Py _ ey _ 2000, _ xio
onei(1-5) =S (1= %)
=8(1-03)

= 5.6 N/mm” (comp) Ans

Fig.21

104 Nima?
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EXAMPLE 4.18. A short column of hollow cylindrical section 250mm outside diameter and
150 mm inside diameter carries a vertical load of 400 KN along one of the planes 100 mm
away from the axis of the column. Find the extreme stress intensities and state their
nature.
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Solution: Given

Inner diameter,  d; =150 mm
Outer diameter, 50 mm
Point load, P =400 KN = 400000 N
Eccentricity, e =100mm
Distance of extreme fiber,
v E=nsmm

Area, A= f( do?-d?)= ; (2507 - 150%)
=31415.93 mm®
Moment of inertia, | =:7( 250" -150%)

=167x10° mm*
Moment about the axis of the column,

=4x10" N-mm
' .
Sectionmodules,  Z =y =220
¥ s
Using relation
P 400000 4x107
Omax =3+ 77 Sraises T Taseans T 127342994

= 1336000 mm’
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42.67 N/mm? (compressive) Ans.

M_ so0000 _ ax107

Guna A Z 3141593 1336000 273-29.94

=17.21 N/mm” (Tensile) Ans.

EXAMPLE 4.19. A short column of external diameter 400 mm and internal diameter 200
mm carries an eccentric load of 80 KN. Find the greatest eccentricity which the load can
have without producing tension on the cross-section.
Solution:
Given
Inner diameter,
Outer diameter, do=
Point load, ‘W =80 KN = 8 x 1000= 8000 N
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Let the greatest eccentricity be x mm which the load can have without producing
tension.

Area, A= H{do’-d?)

=94247.78 mm®
Moment of inertia,

(47~

Z (4007 - 200%)

-

- 50.4x10°- 118 x 10" mm*
a0_ s00

v =3= F=200mm

Section Modulus,

7 =l M0 59 0f mm?
i

Moment about the axis of the column,
M =P xe = 80000x N-mm
For no tension
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80000 _ 80000x

o, = I
9424778 59x10°
80000 5.9x108
o, —ois
94247.78 x 80000
59x10°
=626mm

e
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(ii) Slope & Deflection
By Mohr’s Theorem — 1
4 20x10°
sl =L e radi
0P 8= 7 = oo 06mI0) 0

.37 x10° radians

Slope 8=

(iii) Deflection (8s)
By Mohr’s Theorem — Il

Ax
Deflection 85 = —
S

Deflection 8 = — (AX) (20x1.33) 102
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EXAMPLE 4.21. A hollow rectangular masonry pier is 1.2 mm x 0.80 m, overall, the wall
thickness being 0.15m. a Vertical load of 100 KN is transmitted in the vertical plane

bisecting 1.2m side at an eccentricity of 0.1 m from the geometric
axis of the section. Calculate the maximum and minimum stress

intensities are the section.
Solution:

Given:

Point load, P =100 KN = 100000 N
Eccentricity, e =0.1m =100 mm
bo=1200 mm

Outer diameter,do= 800 mm

by= 1200 -150-150 = 900 mm

Inner diameter,d; = 800-150-150 = 500 mm

Cross —sectional Area,

= 1200x 800 — 900x500
960000 — 450000

100k0
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=510000 mm*

Moment of inert

X 1200 x 800° - —=x 900 x 500°
[T =

5.12x10°-9.37x10°
=4.18x 10" mm*

Moment,
M =P xe = 100000 x 100
=10x10° N-mm
Section modulus,
L - 1045x10" mm®
00
o, g M o0 | toxiot

Z 510000 ' 10.45x107
0.196 +0.096 = 0.292 N/mm”

100000 _10x10¢
Z ™ 510000 1045 %10

Omax =%

=0.196 - 0.096 = 0.1 N/mm’ Ans.
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EXAMPLE 4.21. A short hollow pier 1.5m square outside and 1 m square inside, supports
a vertical point load of 7 KN located on a diagonal 0.8 m from the vertical axis of the pier.
Neglecting the self weight of the pier. Calculate the normal stresses at the four outside
corners on a horizontal section of the pier

Solution: Given:
Outerarea, Ag=1.5x15
=2.25m?
Innerarea, A =1x1=1m’
Point load, P =7kN
Eccentricity, e =0.8m
Area of cross section of pier = A - A,
.25 -1=1.25m?
Moment of inertia about the diagonal

xé(z.uxl,us’-l.nxﬂ]u’)
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Section modulus,

1_o3s
v Tos

0.32m*

Moment,
M=pxe
=7x0.8=5.6 KN-m

Direct stress,

Bending stress,

= 22 2 17.5KN/m?

o=
S ArETS

Atthe corners 2 and 4 there will be no bending stress
..Stress at cornet  1=0g+0p=5.6 +17.5
=23.1KN/m? (Compressive)

Stress at corner 2 = 05 =5.6 KN/m2 (Comp.)

Stress at corner 3 = 04 -0,5.6 - 17.5
=-119 KN/m*
=11.9 KN/m? (Tensile)

.6 KN/m’*(Comp.)

Stress at corer 4 = 04 =
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5.1. MASONRY DAMS

5.1.1. Introduction

Dam is a Massive structure constructed by concrete or masonry to retain water. A massive
wall constructed across the river to store the water is also called Dam or Masonry dam.
1.Rectangular section dam.

2.Trapezoidal section with water face vertical.

3.Trapezoidal section with water face inclined.

The water stored on the u/s side of the dam exerts the horizontal water pressure.

‘The following forces are acting on the gravity dam.

1.Selfweight of dam (W).
2.Horizontal water pressure (P).

3.Uplift pressure at the base.

4.Due to horizontal water thrust and self weight of dam, the resultant thrust (R) will hits
the base.
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5.1.2. Derivation for maximum and minimum stresses
Consider a trapezoidal section masonry dam as shown in fig.

= Specific weight of masonry
= Specific weight of water
Consider 1m length of dam

a
b
H
h = Depthof water
¥
o

i. Weight of dam/m (W)
W =yxvolume=yxAx [
(a+b) (a+b)
> H

W o=y

XHx1=y

_, (ath)
w=r 2 H kN

—=(1)
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‘This will act at a distance of x from vertical face
- _a’+ab+b’
" 3(a+h)

ii. Horizontal water pressure/m (P)
The intensity of pressure at the top is zero, and at bottom is ‘oh’.
Draw pressure distribution diagram as shown in fig.

Total water pressure = area of pressure diagram

“This will act at the c.g. of pressure diagram.

=2 from base

3
Total vertical force at the base (V) = (W)

ol
x(wh)xh= —
on 2
oh’ N
o b
P=20 > (@) v
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Resultant thrust (R)

‘The combined effect of water pressure and self weight of dam produces the resultant thrust

R

R=[V3+P =W+ P?

This resultant thrust cuts the base at a
distance Z'from vertical face (A).

Position of resultant thrust (2)
‘Taking moment about A

(vx2) = Wx +Ph
WxZ=Wx +Ph

z=x+ L5
W

Eccentricity ()
The eccentricity of resultant thrust is ‘e’
e=(z-b/2)

Stresses at the base of dam

Consider in one meter length of wall.
AreaA=bx1=bx1

2= Section modulus about yy axis

b

6

R

[}
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M = Moment due to eccentric load
M=Wxe

o= % direct compressive stress

_M_Wxe

Bending stress
z

ob

Total stress at the base (o)
G=octoy

o= [WoWel w| L, e
AT Z bxl™ b'f6

5.1.3. Stress diagram at the base

‘The stress distribution diagram is drawn according to the maximum and minimun stresses
as given below.
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A

A 8 B A2
\\1 \J (ii) e > bl6 l

(e<bl6 (ye=b/6

5.1.4. Factors affecting the stability of masonry dams
‘The following are the causes of failures of masonry dam.
1. Tension at the base
2. sliding along the base
3. Overturning about the toe
4. Crushing of masonry at the base.
5. Uplift pressure
5.1.4.1. Conditions for stability of masonry dams
1. To avoid tension at the base
2. To avoid sliding of the wall along the base
3. To avoid overturning of dam
4. To avoid crushing of masonry at the base.
5. To avoid uplift pressure at the base.
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Problem

A cantilever beam of span 4m is subjected to a udl of 20 kN/m over a entire length. Find
‘the maximum slope and deflection.Take E = 2.1 x 10° N/mm?, 1=15 x 10°mm*

Given data:

E =2.1x10° N/mm® 20 Km
1 =15x10°mm* e
Required N
Slope at 85 = 2
Deflection at B 85 = ?

(i) Bending Moment L ’F
BM@Aduetoudiload = 2“;4' L o

>

=160 KN.m
Draw BMD
A = area BMD
A=
3
A = % X4x160 =213.33 kN.m’= 213.33x10° N.mm?®
X =Centroid from free end
X =%xl =(%x4)=3m=3xm’mm
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1. Conditions to avoid tension at the base

To avoid tension at any where, in the dam, the minimum stress (Gmin) should be greater
than or equal to zero.

e >0
Plie)z0 1-8)20128¢
AN b b
6e
— <1 b
es—
4 3
eTo avoid tension the resultant force must cut the base within the middle third of the base.
Note: We know,
The position of resultant thrust from heel is “Z".
2=b,0b,02,
2
Z< z b
3

ie To avoid tension

es%(nr)l

2. Conditions to avoid sliding

To prevent sliding of the wall along the base, the total frictional force (1 x W) should be
greater than total horizontal water pressure (P).
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uxW)>P

Factorsafety | Totalfrictional force
against sliding | Totalhorizontal water pressure

£.5. (Sliding) 22 W

>1.00

Where

1 = Coefficient of friction
For design purpose the F.S. (Sliding) is considered as 1.5.

3. Conditions to prevent overturning
The horizontal water pressure (P) may tend to overturn about the toe.

[F=3]

To prevent overturning of dam, the stabilizing moment should be greater than the
overturning.

Factorof safety | __Balancing moment |
against overturning| ~ Overturningmoment ~
£.5. (overturning) = =% 5 1 o

Ph

For design purpose, the factor of safety against overturning is taken as 1.5 0 2.0.
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4. Conditions to prevent crushing at the base

‘The maximum compressive at the base G = %[1 + %)
To avoid crushing at the base

Maximum compressive stress should be less than the safe bearing capacity of sl (or)
allowable compressive stress.

ie Gma<SBCof soil (or) allowable compressive stress

5. Condition to avoid uplift pressure

To avoid uplift pressure at the base of the dam, the weight of dam should be greater than
uplift pressure W > o.b.h
Where

W = Total weight of dam at base

(0xh) (bx1) = @b.h = Total uplift pressure.

5.1.5. Minimum base width for no tension
‘The bottom width (b) of a dam is calculated using the conditions of stability of dam.

(i) To avoid tension at the base
‘The eccentricity should be with in the middle third.

. b
ie e

in

; 2<2p
3

3
b26e,

v
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(i) To avoid sliding of dam

Factorof safety| ___Frictionalforce
(sliding) " Horizontalwaterpressure
F.S. (liding) = *X Wiois

(iii) To avoid overturning of dam
Balancing moment
Overturning moment

Factor of safety overturning = =15

FS. (overturning) = =15(or)2

(iv) To avoid crushing at the base
‘The allowable compressive stress should be greater than maximum compressive stress.
SBC of 50il OF Galowavle 2 Grmax

The minimum base width required is the maximum value of base width for the above
conditions.
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5.1.6. Maximum height of dam for no tension
‘The height dam is calculated for the stability conditions.

‘The maximum height of the dam s the minimurm height value for the stability conditions.

5.1.7. Elementary profile of a dam
To avoid tension, the resultant force (R)
must cut the base with in the middle third.

e= % on either side of geometrical axis. LI

‘This must be satisfied for both dam full " k

and dam empty. fom——
[P—

‘The right angled triangle cross section of +

2 dam will be satisfied the middle third rule when I

the dam is full o empty, and is called elementary -

T

profile of adam.
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5.1.8. Minimum base width of elementary profile for no tension
Consider a triangular section masonry dam of bottom width ‘b’ and height ‘. Retains
water on its vertical face to full depth (h = H) as shown in fig.
Let
v = Specific weight of masonry
= Specific weight of water

(LJ = Relative density.
o

s

Consider 1m length of wall.

W=7!([%xbe)x

Taking moment about A
WXZ=W x+Ph

2= (;l z)
w
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To avoid tension

| m= 5
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Problem 5.1

A trapezoidal section masonry dam 8m height, 1.5m wide at top and 3.5m wide at base,
retains water on its vertical face to height of 7.5m if the relative density of masonry is 2.4.
determine the stress intensities at base and draw stress distribution diagram.

Given

Top width a  =15m
Bottom width b =35m
Height of dam H  =8m
Depth of water h  =75m
Specific gravity s =24

Assume unit wt. of water ® = 9.81 kN/m*

Unit weight of masonry,y  =Sxo
- - L J
EIERRHERRTRR= 2.41 x 9.81 = 23.544 kN/m’
Required

Ly
b

Solution
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Consider 1m length of dam
i. Weight of dam 1m (W)

(a+b)

¥ H

W = 470.88kN

“This will act at x from vertical face

15*+15x35+35°
3(15+33)

1
"

=1316m

ii. Total horizontal water pressure / m (P)

- :
po O 9SS s g0k
2 2
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‘This will act at & from base.

= h3=

iii. Position of resultant pressure (2)

z =xe—

2759

X2 .78m
470.88

z  =1316+ (

Z=2.780m

iv. Eccentricity (e)

e -(Z—b/z):{us—
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(ii) Slope
By Mohr’s Theorem - |
4 21334210

£ = 220 agians
EL (21x10°)(15210°)

[

85 =6.772 x 10" radians

(il Deflection
By Mohr’s Theorem —1i

_Ax (13340102

Snax = @1x10°)(15x10°)
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V. Stresses at the base of dam (a)

o =X[1sle
50

Cmax = 1(l +S)atme(l!)
DA
O = 088 (1, OXL03) _ 135 09 kn/m? (Comp.)
35 35

G = % (I - —) at heel (A)

) =-103.017 kN/m? (Tension)
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Problem 5.2

A masonry dam of trapezoidal section 2m wide at top 6m wide at base and 12m height
retains water on its vertical face, unit weight of masonry and water are 23 kN/m® and
9.81 kN/m’ respectively. Determine the stresses at the base of dam.

a.  When the dam s full N

b.  When the dam is empty e
Given
Topwidth a =2m
Bottom width b =6m
Heath H =12m

Unit weight of water m=9.81 kN/m*

Unit weight of masonry y = 23 kN/m*

Required
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Solution
i. Weight of dam 1m (W)

(a;b) H = 23(2—;6]112=11M kN

w

“This will act at x distance from vertical face

T _drabeb’  P4Qx646 o
3(a+b) 3(2+6)

) When the dam is full
oh’ _981x12*

P — 706.32 kN
2 2
‘This will act at & from base.
A R
373
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iv. Eccentricity
e =(Z-b/2)= (4.72-6/2)=1.72m

v. stress at the (o)

o _1’(1:6—"’]
5078

omm = 2[148)- 1+ 85872) ot toe ()
DA 6

Gmax = 500.48 kN/m? (Comp.)

omn =2 (129 atheel(a) = L0 (;_6xL72
DA 6 6

Omin == 132.48 kN/m? (Tension)
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Stress diagram

b. When the dam is empty (h =0)
Horizontal water thrust/m (P)

P
z P=0]
z = x=216m
Eccentricity(e)
e =Z-b2=(216-62) =

Stress at the base (o)

o)
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Gmax = 29.44 kN/m? (Comp.)

omn = 2(1-% i‘“(l,“"(’"’“))
" _b( h) 3 3

Gmin  =338.56 kN/m” (Comp.)

Stress diagram
A

omin

Problem 5.3

A trapezoidal dam 1.5m wide at top 3.5m wide at base and 8m height retains water on its
vertical face with free board of 0.5m. Specific gravity of masonry is 2.4. Check the stability
of dam coefficient of friction 0.6 Max. allowable stress = 300 kN/m”.

Given

Topwidth a  =15m

Bottomwith b =

.5m
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Height H  =8m
Free board =05m

Depthof water h  =805=7.5m

L -5 -2
o
¥ =2.4x9.81=2354kN/m’
® =9.81kN/m*
Solution
. Weight of dam 1m ()
+b)
wo o= )H=23.54(
W -47088kN

“This will act at x from vertical face

- _a’+ab+h’ 15 +(15x35)+3.57
3(a+h) 3(15+3.5)

1316m

a
||
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ii. Total horizontal pressure / 1m (p)
ol 1x7.5%

P =275.90kN/m
2 2
7 e el heames 2 yas
w 47088
z  =278m
iv. Eccentricity (e)
e =(z- b/2)=(2.78- 3.5/2) = 1.03m

V. Stress at the base (q)

-5

6e) _470.58 (1 6x1.03
1 =1+

b)) 35 35

s =

|2 ==

)

372.09 kN/m?’ (Comp.)
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103.017 (Tension) kN/m*

47088 (| 6x1.03
35 35

Check for stability of

i. To avoid tension N atbase
Guin 20
e<b/6 (o) 2523 b
e=103m
=35
b/6 =35 =058
&> b/6 Hence tension will develop at base.
ii. To avoid sliding
0.6x470.38
Fs =g, 2 20X 02 5100
P 2759
FS  =102>10Hence safe against sliding

iii. To avoid failure from over turning

FS =

WOX) o AT088(G5-130) o o

Ph 2759x25
148 > 1.0 (Safe)
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iv. To avoid from crushing
SBC > Gmax
SBC =300 kN/m’
Gma  =372.06 kN/m®
SBC < Gmax
Hence not safe.
Problem 5.4

A trapezoidal dam 4m high has top width of 1m, with vertical face exposed of water it
retain water up to its top level. Find the min. base width required. To avoid tension and

sliding. Take unit wt. masonry as 22 kN/m® and that of water as 9.81 kN/m®. Take p = 0.6
andFS.=15

Given
Top width a  =1m
Heightof damH  =4m
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Problem

A cantilever beam 3m span carries a point loads of 10 kN at free end and an udl of 2 kN/m
over its entire span. Find the max. slope and deflection. Take El = 2 x 10° kN.m?

Given data:
Span ¢ =3m
Pointload W  =10kN
udl wo =2kN/m
El =2x10"kN.m?
Solution:
(i) Bending Moment

Bending Moment @ A due to point load
= WI=10x3=30kN.m

Bending Moment @ A due to udl

= W2 giNm
2 2
Draw BMD
Ay =area of BMD for point load

Ay rea of BMD for udl

30kNm

9kNm

2kN/m 10kN

—-— X2=340—

ZZ
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Depth of water h=H =4m
¥ =22 kN/m*
®  =9.8kN/m’

Condition : No tension at base

Required

b=?
Solution
i. Weight of dam / m (W)

W=d4(1+b)

3(a+b) 3(1+b)

@)y (ﬂ] x4
2 2

e

+ab+b® _ 1 +lxb+b’

el
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ii.. Total horizontal water thrust / 1m (p)

W= = (43

iii. Position of resultant pressure

b 4b+l 7848 4
3(1+5)

a3

_biebil 713
T 3(1+b) | 3(1+b)

@)

?+b+8.13
3(1+b)

Bottom width required

a) To avoid tension at base
e <bf6(o) Z<2/3b
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b ?+b+8.13
3 3(1+b)

2b(1+b)=b’+b+8.13

2b+2b=b’+b+8.13
b’+b-8.13=0

o 1T 4x1x813

2x1

by =2.40m

b) To avoid sliding

F.s. (sliding) = 22 5 150
_ 06x840+h)
7848
=15
0.6x44 (1+b) = (15x78.48)
26.40 (1+b) = 117.72

=24m

-(@)
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117.72
2640

b =446-1

1+b =

3.46m

b:=346 m

Minimum bottom width required (b) = Maximum of by and by

Result:
b=346m

Problem 5.5

‘A masonry dam 1m wide at top 3m wide at base retains water on its vertical face, the
damis full. Determine the max height of dam required.

i For no tension at base

ii.  Toavoidsliding, F.S. against sliding = 1.5

iii.  Toavoid overturning,F.S. over turning = 2.0
Take p=0.60 Unit weight of masonry =23 kN/m*and Unit weight of water= 9.81 kN/m*
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Given

a  =im
b =3m
n 06
® 9.81 kN/m’
¥ =23 kN/m*
F.S (Sliding) = 1.5
F.S. (Overturning) = 2
Required
H=h=?
Solution
i. Weight of dam 1m (w)
W=y @Dy 3 Uy ey (1)

2

a’+ab+b® _1P+(1+3)+3*
3(a+h) 3(1+3)

1

1.16m

ii. Total horizontal thrust / 1m (P)

_oh’ _ 98IxH

- = 22X .

2 2
4.905 H kN
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Bo=H3
iii. Position of resultant thrust (2)

7 =xsli
W

z =116+ 47':'22" : X Hf3 = (1.16+0.0355H%)
Maximum height
i. To avoid tension
2/3b=2/3x3
@2/3M3m =2m
(1.08+0.0355H) =2

z

"

z

0.0355H  =2-116 = 084

H; =4.86m

@)
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ii. To avoid sliding
FS. (sliding) =15
uw _06x464

FS. =f—=—" =15
P 4905H*
[P 2 Ly
4905x15
H,=3.75m
iii. To avoid overturning

F.S (overturning) = 2.0

W(b-x)

FS =
Ph

20m

_ (6xH)(3-108) _
T 490SH x(H[3)

_46(3-1.08)3 _
4905xH*

46(3-1.08)3
490532

e

N

s H=A2T

5.19m
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Maximum height required = min of Hy, Hy & H

Result:
H=375m
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REVIEW QUESTIONS
Two mark questions
What are the failure of Dams?

Define middle third rule.
State the shape of the elementary profile of a masonry dam.

State the conditions to avoid tension at the base.

Draw the elementary profile of a Masonry dam.

What is minimum base width of elementary profile of masonry dam?
Which are the main factors affecting the stability of a masonry dam?
When tension is developed at the base of a dam?

On what bass the base width of a masonry dam is determined?

Three mark questions
1. What are the causes of failure of masonry dams? State the conditions to check the

stability of dams.

2. Whatis an elementary profile of a dam? Sketch the same.

3. A trapezoidal masonry dam having 12m height retains of water to a height of 10m on its
vertical face. Find the horizontal water pressure if r =9.81KN/m®.

4. State and explain middle third rule for no tension at the base of dam.

5. Derive the condition for no tension at the base of masonry dam.

6. State the procedure to find the minimum base width of a masonry dam for no tension.

L S o





image260.png
Ten mark questions
1. A trapezoidal masonry dam m wide at top, 5m wide at the base is 8m high. It retains
water to a depth of 7.5m on its vertical face. Calculate the maximum and minimum
stress intensities at the base. Take weight of masonry as 22 kN/m* and that of water
25 9.81 kN/m*.
2. explain in details how the various checks are being done for ensuring the safety and
stability of a gravity type masonry dam.
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Due to Point load
Loxn
2

A

x3x30 =45kNm?

% =%x3-2m

1

2
2
3
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. A trapezoidal masonry dam 1m wide at top,4m wide at its bottom and 6m high is
retaining water on its vertical face to a height equal to the top of the dam. Determine
the maximum and minimum intensities of stress at the base. Take weight of masonry
as kN/m* and that of water as 9.81 kN/m”.

. A trapezoidal dam 3m wide at top, 8m wide at the base is 12 m high. Its retains water
up to a depth of 11m on the upstream vertical face. Take the weight of masonry as24
kN/m? and that of water as 9.81 kN/m?.Check the stability of the dam for overturning
and sliding if = and F.0.S=15.

. A trapezoidal masonry dam having 3m top width,8m bottom width and 12m high
retains water to a height of 11m on its vertical face. Check the stability of the dam, if
the masonry weighs 20 kN/m® and co-efficient of friction between the bottom of
masonry and soil is 0.6.Take allowable compressive stress as 400 kN/m* and weight of
water as 9.81 kN/m”>.

. A trapezoidal masonry dam 2.5m wide at toip 5.5m wide at the base is 15m high. It
retains water to a depth if 12m on its vertical face. Check the stability of the dam for
overturning and sliding if p=0.60 and F.0.S =1.5.Take weight of masonry as 25 kN/m*
ands that of water as 9.81 kN/m”>.

. Amasonry dam of 11m height retains water on its vertical face for a height of 9m.The
width of the dam is 2m in the top 2m height and varies gradually to 5m at bottom,
with slope on one side only. Find the factor of safety of the dam against overturning if
unit weights of masonry and water are 20 kN/m® and 10 N/m’respectively.
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5.2. EARTH PRESSURE AND RETAINING WALL

5.2.1. Definition
A masonry structure constructed to retain the earth is called retaining wall. The
retained earth exerts pressure on the retaining wall is called earth pressure.

Types of retaining wal
a. Based on the cross section
1. Rectangular section
2. Trapezoidal section with vertical (or) inclined back.
b. Based on the forms of back fill
g wall, earth level with top.
g wall, retaining earth surcharged soil.
g wall, retaining earth with surcharg
g wall retaining submerged soil.

1) Retaining earth 2) Retaining earth with
level with top surcharged soil
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~ 7

3) Retaining wall with
surcharged load

4) Retaining earth with
submerged soil




image264.png
5.2.2. Angle of repose of soil (¢)

Earth cannot be retained at a steeper slope, as it tends to slide and slip. The maximum natural
slope at which the soil particles will rest permanently due to internal friction, without further
slipping (or) sliding is called angle of repose of soil. It is denoted by .

5.2.3. State of equilibrium of soil
1. Elastic equilibrium of soil
A soil mass in the natural state of rest is said to be in the state of elastic equilibrium.
Let ~ 2
ertical intensity of pressure. pe
Pu _ﬁ} i
Where Pv

K= Coefficient of earth pressure
= Specific weight of soil
h = Depth of soil mass from free surface of earth.
2. Plastic equilibrium of soil
When the soil mass is allowed to retained or contract laterally, until failure takes place, the

soil is said to be in plastic equilibrium of soil. The failure will be shear failure and exert the
pressure may active earth pressure or passive earth pressure.
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5.2.4.1 Active earth pressure

The pressure exerted by the retained earth on the retaining wall is called active earth

pressure. Due to this pressure retaining wall tend to move way from earth.
pa = Intensity of active earth pressure
Pa = KaxoxH

Where
¢ 2(as- ¥,
K =tan’(45-
(l+smf %)
= coefficient of active earth pressure

Sliding
wedge

5.2.4.1 Passive earth pressure.

Moment away

_~from back fill

Retaining
wall

The pressure exerted by the retaining wall (or) contract soil on the retained earth is called
passive earth pressure. Due to this pressure retaining wall tend to move towards the earth.

But it will happen rarely.

P, =Theintensity of passive earth pressure
Py =KpxoxH

‘Where

A (1—sin P}

= Coefficient of passive earth pressure

© = Unitweight of earth

H = Height of retaining walls
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Moment away
from back fill x

Retaining =
wall

Sliding
“wedge

5.2.5. Rankine's theory of earth pressure.

Rankine’s theory and coulomb’s theory of earth are available to determine the earth pressure
on retaining walls.

British Engineer Prof. W.J. Rankine was given the theory of earth pressure in 1857.

5.2.6. Assumption made in theory of Rankine’s earth pressure.
1. The retained soil mass is in the state of plastic equilibrium.
The retained soil mass is homogeneous, cohessionless.
3. The back of wall is smooth so that the frictional resistance between the wall and
retained earth is negligible.
The retained soil surface is a straight line.
5. The failure of retained earth is by shear along a plane called rupture plane.

L4

»
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5.2.7. Rankine’s lateral earth pressure on retaining wall
Case 1:
Retaining wall back fill level with top.

P =Rankine's lateral earth pressure
3
i) Pressure Diagram i) Section
Where
K = ) =tan? (45 - ‘/ )
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= coefficient of active earth pressure

©  =specific weight of earth
H = Height of retaining wall
& = Angleof repose of soil
Total earth pressure P = Area of pressure diagram
K, oH*
- -k
P A X (Kou0.H) X H
K, O,
3 (A

This pressure will act at centre of gravity of pressure diagram.
ie at /i from base

B

Case2:

Retaining wall back fill with surcharged soil
« = Angle of surcharge of soil
& =Angleof repose of soil
© = Unitweight of earth
H = Height of retaining wall

Cosa—+Jcos® @ —cos> ¢
Ko =Cosy ——————
cosa+feos” a—cos® ¢

= coefficient of active earth pressure
The lateral pressure will be parallel to the inclined earth surface.
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i) Pressure Diagram i) Section

Rankines earth pressure P = K, 2

This pressure will act parallel to the inclined earth surface.

Py = Horizontal component of earth pressure
Py =Pxcosa Py D‘i

This willact at & = H/{ from base. T

Py = Vertical component of earth pressure
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Py PxSina
This will act along the vertical face of the wall.

Case 3:
Retaining wall with surcharged load
Let
a = Intensity of uniform surcharged load (or) superimposed load over
the retained earth.
3 = Total lateral earth pressure
3 Pi+Py
Py =Pressure due to surcharged load
Py Area of pressure diagram of rectangle BCDE
Pi =(Kxq)xH

This will act at ‘yy’ distance from base.

w="Hj

Py = Pressure due to retained earth
P Area of pressure diagram of triangle ADE
1 ol
P; == x(Ksx ©.H) xH=Ks ——
2 3 (Ka ) Ka £)
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Dueto Udl

(ii) slope
By Mohr’s Theorem -

radian

[ [45+9]=2.7x10° radians

2x10°

(iif) Deflection
By Mohr’s Theorem — Il
':; é (A1 +Arxa)

((45x2) + (9x2.25))

Brmax

513x10°m=5.513mm
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q - Uniform surcharged load

n

!I!"IIH
A

LKa.o H--Kaq

Pressure Diagram Section
This pressure will act at y, distance from base
Vo= '% distance from base.
P = (Py +P,) = resultant pressure
This will act at  distance from base.
Taking moment about bottom of wall.
PXy =Pixyi+Pay:

Piyi+P2ys)
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Case 4:
Retaining wall with sub merged soil.

When a part or entire depth of retained earth is submerged, the lateral pressure on
the retaining wall is due to (i) Hydro static pressure (i) Pressure due to dry earth (i) Pressure
due to the submerged weight of soil.

Let
o =Specific weight of dry soil to a depth Hy from top.
2 pecific weight of saturated soil to a depth H, from bottom.
® .81 = Specific weight of water kN/m”>.
© ) = (02 - ) = Specific weight of submerged soil (or buoyant weight)
P (""" ‘] = coefficient of active earth pressure
T+sing
Py ressure due to top soil to a depth Hy
Py ea of pressure diagram of A* section
P =Koy

This will act at ysdistance from base ys = (H, +H, % )

P, =Pressure due to top soil to a depth H
P, =Area of pressure diagram of rectangular section
Pr = (K oixHy) Hy

This will act at y;” distance from bottom. y; = 7 %
P, = Pressure due to hydrostatic fore (water) and submerged soil
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Ka@ropi:  KaoH:

Pressure Diagram Section

Ps %X(HM::«HI*KaWbHI)H

This pressure will act at 'y’ distance from base.
P =Py + Py + Ps = (Total earth pressure)

This will act at  distance from base.

Taking moment about base

PX Y = (Puys+ PayrtPays)
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5.2.8. Maximum and Minimum stress
Consider a trapezoidal section masonry retaining wall, retaining earth on its vertical face level
with top
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Let

es=<zTow

= Top width of wall

= Bottom width of wall

ieight of retaining wall

= Unit weight of masonry
nit weight of soil

= Angle of repose of soil
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. Weight of wall/m run (W)
w=1mlume=7x(¥)xHx1

W=yx [7] xH| kN

This will act at x from vertical face.
? +ab+b®
3(a+h)
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Rankine’s earth pressure/m (P)

ol
P =Kk 2
<5

‘Where
(1=sing) e g
L '(nsmf]'m s A’

= coefficient of active earth pressure
This will act at  from base & =

V =Total vertical force at the base
v=w.
R = Resultant thrust

R 7 BT P

Position of resultant thrust (2)
Taking moment about Heel (A)

WxZ=W.x+Pxh

Z=x+ [fj h
w

[2v=w]
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e=(z- % ) = eccentricity of resultant thrust
M = (W x e) = moment due to eccentric force

) ()
A

-]

+
_—Jé

I
i

]
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Stress distribution diagram
The value of maximum and minimum stresses are based on the eccentricity (e) of

vertical force at base as given below.

(i) e<bl6

5.2.9. Stability of retaining wall
Causes of failures of retaining wall.
Tension at the base of wall
Sliding of wall along the base
Overturning of wall about toe.
Crushing of masonry at the base of wall.

Bwne

Stability of retaining wall
Following are the conditions of stability of wall.
i.  Toavoid tension at base

b
e<g (o <Y
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u...‘..z(lf—"’) >0
b

ii.  Toavoid sliding
F.5. (Sliding) = L0/alfrictional force , |
Horizontal force

F.S. (Sliding) = &P“’ =10

for design purpose F.5. 2 1.5
iii.  Toavoid overturning
Balancing moment

F.5. (Overturning) = L 210
Overturning moment
W(b-x
£5. (Overturning) = 0% 510
Pxh

Design purpose FS = 1.5 to 2.00
iv.  Toavoid crushing
Maximum compressive stress should be less than allowable compressive stress. (Safe bearing
capacity of soil)
Gmax < SBC of soil.
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Problem
A Cantilever beam of span 5m is carrying a

point load of I6KN at 4m from fixed end. A}

Calculate the slope and deflection at load point
and at the free end by area moment theorem.
Take E=1.5 x10° N /mm’ and x10° mm*
Given data:

Cantilever beam with point load

Point load W = 16KN

Span sm
1.5x10° N/mm*
1=4x10° mm*

64 KNm

To Find:
Max slope = 8=?
Max deflection= & =?

. :
()13 6T

BMD

DEFLECTION CURVE
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Problem 1
A trapezoidal masonry retaining wall 1m wide at top, 3m wide at its bottom is 8m high. It

retaining earth having level with the top of the wall on its vertical face. Find the max. min
stress intensities at the base of the wall. I wt. of masonry is 24 kN/m” and earth is 18

kN/m? the angle of repose of earth is 40°.

Given

i. Weight of wall per metre (W)
w .1[%}(” =z4(£},x= W=384kN

“This will act at x distance from vertical face
- a’+ab+b* +(1x3)+37
3(a+h) 3(1+3)

1.08m
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i Rankine’s earth pressure per metre run (P)

2
po= Ka|2f
2

ka = (L) (Losind0%) o510
T+sing T+ sind0
.
P = 02174y 828
P=12525 kN

This will act at a distance / from base
h =H3=%

7=2.6Tm

iii. Position of resultant thrust (R)

2 =wl;
w

7z =108+ |1 B35
384

12,67] = Z=195m
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Eccentricity (e)

=045
e =z-b2 =(195-32) = [©

Stress at base (o)

6x0.45

) (Compression)
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'roblem £

A retaining wall 1m wide at top 3m wide at base 6m high retains earth on its vertical face
leveled with top unit wt. of masonry and earth are 23 kN/m® and 18 kN/m® respectively.
Determine

i. Rankines earth pressure 1m run

i Resultant thrust

il Stresses at the base

iv.  Check the stability of wall

Take 1 = 0.6, max allowable stress = 300 kN/m? the angle of repose of soil is 30°.

Given

IEeg=ITowo
&
=
<
3
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i. Weight of wall 1m (w)
w =,{ﬂ)ﬁ

2

_a’+ab+b’

3(a+h)

= 23x(£)x5
2

_Pa(1x3)+3

3(1+3)

i Rankine’s earth pressure per metre (P)

P

Ka

-

P=108 kN

This will act at a distance / from base

=HB=9

W =276 kN

x=1.08m





image286.png
Resultant earth pressure (R)

R = WP = 2767 +108% R=29638 kN
Position of Resultant pressure ()
2 -nPh Z=186m
w
Eccentricity (e)
e =z-b2 ©=036m
Stress at base
s I (ui”]
b b
oo =¥ (HE) 226 (Hﬁ’o' 6) attoe
b b 3
G = 15824 KN/m’ | (Compression)
Omia = (lfﬁ—”] R (l— ox0 36) atheel
b b 3 3
G = 25.76 kN/m* (Compression)
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Stress diagram

Check the stability of wall
i. To avoid tension

Omn 20 (or) e<bf6 (or)
e =036m
b6 =36 = o05m

e <b/6 (safe)
Hence tension will not be developed at base
iii. To avoid sliding
Fs. =%Y>10
P

06x276
F.S. (Sliding) = 108 =153
153210; Hence safe against sliding.
iii. To avoid failure from crushing

SBC > Omax

SBC =300 kN/m?®

Ormax = 158.24 kN/m?

SBC > Omax (Hence safe)

2<2/3b
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iv. To avoid over turning

Fs. =000 4
P
Fs. = 2766-108 =2.45 > 1.0 (Hence Safe)
108x2
Hence safe against over turning.
Problem 3

A retaining wall 1m wide at top 6m high retains earth on its vertical face level with top. The
unit wt. of masonry and earth are 23 kN/m” and 16 kN/m? respectively. Determine the min.
base width required to avoid.
i) Tension and i) Sliding F.S. against sliding = 1.5
‘The angle of repose of soil is 30°, Take p=0.6
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Given

a  =im
H o o=
n =06
Y =23kN/m’
©  =16kN/m*
¢ =30°
Required
b=
Solution

i. Weight of wall per metre (W)

w= y(“"]n =13(
2 2

w=69 (1+b)kN
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- a’ +ab+b® _P+lxb+b?
3(a+b) 3(1+b)
11b+b*

(1+b)

i Rankine’s earth pressure (P)

:

- kaf 2
2

@ o [Lzsing) _(1-sin30
Trsing) {1+ sin30°

16x6°

-

0333

-

0.333x

P=96 kN
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Area of BMD A

bh
Bending moment =WL

= 16x4 =64 kNm

=Zxbxh

= xax64
A = 128 kN.m*
A = 128x10°N mm?
Centroid of BMD
x=(3xa)+1
3
= 3.67m =3.67x10° mm
Applying Mohr ‘s theorem -1
4
i) Slope =8 =6 max = —
(i) slope =85 Vi
128x10°

- (1.5x10°)(4x10%)
85 =0 = 2.13x10° Radians

1008
SKN/m

4m

26Ty
5

BMD
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iii. Position of Resultant pressure (2)

- P 1+b+b* 96 6
z =x+—h = + X =
W 3(+b)  69(1+p) 3

_ l+b+b? L0348 . b’ +b'+1+8348
3(1+b)  3(1+b) 3(1+5)

b'+9.348
3(1+b)

Maximum base width required (b)

2) To avoid tension
z <2/3b
2, _b+b+93a8
3 3(1+b)
2b(1+b) =b’+b+9.348
2b+26° =b’+b+9.348
b’+b-9.348=0

o Tl I* —4x1x(-9.348)

2

by =2.6m
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b) To avoid sliding

Minimum base width = Maximum of by & by

Result

Minimum base width required (b) = 2.6m
Problem 4
A masonry retaining wall of trapezoidal section with a vertical face of 1m wide at top
and 3m wide at bottom with a height of 6m. It retains sand over the entire height
with an angle of surcharge 20°. Determine the stress intensities at the base of the
wall. The sand wt. is 18kN/m’ and an angle of repose of soil is 30°. The masonry wt.
of 24 kN/m?.
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Given

Top width

Bottom width

Height

Angle of surcharge
Angle of repose of soil
Weight of masonry
Weight of soil

©

e<=er T

Required

o= Hsg)
Py

Solution

i. Weight of wall run per metre run (W)

w :y(L*b)H = (E)ﬁ
2 2

(1x3)+3
3(1+3%)
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Rankines earth pressure per metre run (P)

2
P kax|2f
2

cos@—y/cos’ @—cos’ ¢
Ka  =|cosa—r = L7 &
cosa+4Jcos” a—cos’ ¢
©0520° —y/cos® 20°—cos 30°
Ka  ={cos20p Y2 - B -
€08 20°+4/cos” 20~ cos” 30°
0.9397-,0.9930-0.75

0.9397+,/0.883-075
0.9397-0.3647
0.9397+03647

Ka  =0.9397x

Ka  =0.9397x [

Ka  =0414
- HY/ - 6/ =
Kaxw /) =0414x18x 6 = 13014 kN

3
Py =Vertical component of earth pressure
Py =P xsin o =134.14 x 5in 20° = 45.88 kN
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This will act along the vertical face of wall
Py jorizontal component of earth pressure
P, =Pxcosa

This will act at  distance from base. N
FeHL=6 =
A "

h=2m
Pu
Total vertical force (V)
v =W+ Py = (288 + 45.88) = 333.88 kN
v =333.88kN

Resultant thrust per metre run (R)

R V2 +p,? = [333.887 +126°
R 56.86 kN

This resultant pressure will hits the base at ‘Z’ distance from vertical face.

Position of resultant thrust (2)
Taking moment about A (heel)

VXZ =(W x)+(Pux i)+ (Pyx0)
(W x +Pyh)
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1
= ——((288x 1.08) + (126 x 3)
s )+ )

z =1.60m
3
i =@z-b/)= 2=
Eccentricity e = (- b4) = (160 E].mm

Stress intensities at the base (o)

Grmin

% (1+7) attoe (B)

e
o = 333“( 5’“"] =133.55 kN/m” (Comp.)
v
o =L at heel (A)
P [ ) @
3338

3388 (| 6x
Grmin
3

=89.03 kN/m (Comp.)
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Problem 5
A retaining wall 1.5m wide at top 4m wide at base and 8m high retains earth on its vertical
face with surcharge of 15° and angle of repose of 30° unit wt. of masonry and earth are 23
KkN/m® and 18 kN/m? of the respectively. Determine
i.  Rankine’s earth pressure
i Stress intensities at base
i, Check the stability of wall
for tension sliding, overturning and crushing,
Take 1 = 0.6, maximum allowable stress = 300 kN/m?
Given
Top width a
Bottom width b
Height H
Angle of repose of soil o
v
o
"

=15m

Weight of masonry
Weight of soil

Maximum allowable stress
Angle of repose o

Required

Voo =

i) Checkfor the stability.
Solution
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i Weight of wall per metre run (W)

a+b
w = —|H =23
"{ 2] (

W =506 kN

i Rankine’s earth pressure per metre run (P)

Ka  =(cosq) [

cosa+,Jcos® —cos ¢

cosa —Jeos” a—cos ;)
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<05 15°—/cos” 15°—cos® 30°
Ka  =(c0s15°) | —— e

c0s15°+4/cos* 15—cos” 30
09659-,0.933-0.75

0.9659+4/0.933-0.75

Ka  =09659x

Ka  =09659 | L269-04277)_ g4 05382

0.9659+0.4277 13936
Ka  =0373

2 y
P skax 2 o373y 1828
2 2
P =21486kN
P, = Vertical component of earth pressure
Py =Pxsina
= 214.86xsin 15°
Py=55.60 KN Py

ct along the vertical face of wall

Py = Horizontal component of earth pressure
Py =Pcosa
Pv =214.86 x c0s 15°

Py = 20754 kN

P
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This will act as /i from base.

h=HL=8 =267

h =267
Total vertical force (V)
v =W+P, = 506+55.60
V = 56160 kN
Resultant thrust (R)
R =\ +p =.56160°+P,*
R = 598.72 kN
Position of resultant thrust (2)

Taking moment about A.

z =%|w;+(v.<}-l)+(mxu)]— %[w} Pu i +(Pyx0)]

Z = —— (560x147+207.54x2.67)
6160

Z=23Im
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Applying Mohr ‘s theorem -1l
Ax

Deflection =65 = 8 mpe = v
@ ° E

(128x3.67)x10"
T (15x10°)(4x10°)

Deflection =

8 =8 ma=7.83mm
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Eccentricity (e)
e

e=045m

(1

Omax = 235.08 kN/m? (Comp.)

O =L [nﬁ) atheel (A)
5%

_ 56160(, 6x0.45
a a

Omin  =45.63 kN/m? (Comp.)
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Stress diagram

A B
Gnin
G

Check the stability of
(i) To avoid tension at base

O 20

e sb (o) z<

e =04sm

% =A=0'67'"
e <k

Hence safe against tension.

(i) F.5. against sliding
£s. <4510
By
_ 0.6X561.60
T
=162>1.0(safe)

Hence safe against sliding.
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(iii) F.S. against overturning
_V(b-3)  _561.60(4-147)
TRk 20754x267
FS =2.56>1.0 Safe.

Hence safe against overturning.

FS.

(iv) To avoid crushing
SBC > Gmax.
360 > 235.08 kN/m” (Safe)
Hence safe against crushing.
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REVIEW QUESTIONS
Two mark questions
Define angle of repose of soil.

2. Write the Rankine’s total earth pressure formula for the retaining wall retaining earth

©®No ;e

with level back fill.
Write the Rankine's total earth pressure formula for the retaining wall retaining earth
with angular surcharge.

What is an active earth pressure?

What is passive earth pressure?

What are state of equilibrium of soil?

What is meant by plastic equilibrium of soil?

What is an elastic equilibrium of soil?

At which point of the base, the bearing pressure will be maximum in a retaining wall?

. What will be the co-efficient of passive earth pressure of soil having angle of repose

3077

Three marks

om e W

Explain state of equilibrium of soil.

Explain active and passive earth pressure in retaining wall.

Explain the angle of repose of soil.

Distinguish between active and passive earth pressure.

What are the assumption made in Rankine's theory of earth pressure?
Explain the Rankine’s theory of earth pressure.




image305.png
7. What are the forces acting on the retaining will to keep it in equilibrium? Draw the
normal stress distribution diagram to avoid tension at the base.

8. State the conditions to check the stability of retaining wall.

9. Develop Rankine’s total earth pressure formula for the retaining wall retaining earth
with uniform surcharge.

10. Develop Rankine’s total earth pressure formula for the retaining wall retaining earth
with angular surcharge.

Ten marks

1. A retaining wall trapezoidal in section is 9m high, 2m wide at top and 3m wide at the
bottom with a vertical earth face retaining earth level with the top of wall. If the weight
of masonry is 24kN/m” and that of the earth is 18 kN/m* with an angle of repose of 30°.
Calculate the maximum and minimum stress at the base.

2. A retaining wall 7.5m high with a vertical face supports loose earth at a surcharge of 20°
to the horizontal, if the earth has an angle of repose of 35° and has a specific weight of
20 kN/m’. Calculate the earth pressure per meter length of wall by Rankine's formula.
Calculate the horizontal and vertical components of the above earth pressure.
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. A retaining wall 6m high with a smooth vertical back retains earth level with the top of
the wall. Determine the magnitude and the line of action of the horizontal thrust per
meter length of wall. The weight of sand is 20 kN/m® and its angle of repose 40°.

. A trapezoidal masonry retaining wall 1m wide at top, 2m wide at the base is 7.5m high.
It retains earth on its vertical face with the top of the wall. The angle of repose of soil i
30°. Take weight of masonry as 22 kN/m* and weight of earth as 18 kN/m®. Check the
stability of retaining wall,if the co-efficient of friction between masonry and soil as 0.60
and factor of safety as 1.50.

. A retaining wall 2m wide at the top, 4m wide at the base and 6m high retains earth to its.
full height on the vertical face. There is road on the top of retained earth which
transmits uniform surcharged load of 50 kN/m?. Take weight of earth as 18 kN/m"® and
angle of repose of earth as 30°. Calculate the magnitude and the position of line of
action of horizontal earth pressure per meter length of wall.

. A trapezoidal masonry retaining wall 1.5m wide at the top, 5m wide at the base and 9m
high with a vertical face retains earth level with the top of the wall at 2m below the top
level, the foundation of structures transmits a uniform surcharged load of 120 kN/m?*
Take weight of earth as 20 kN/m* and angle of repose of earth as 35°. Calculate the
‘magnitude and the position of the earth pressure on the retaining wall.
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Problem .
A cantilever beam 4m span carries an udl of 5 kN/m over 2m from fixed end and a point

load of 10 kN at free end. Find the max. slope and deflection. Take El = 10 x 10° kN.m?.

Given Data:
span 4
udl w

Pointload W
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El =10x 10" kN.m*

x =2m
Solution

(i) Bending Moment
BM due to point load w.

=10x4=40kN.m
B

BM due to udl at A= =

=5x2x %4 =10kN.m

Draw BMD by parts as shown in fig.1.13
Due to point load,

A =Lxpxn
2
Ay %xaxw = 80kNm?
=2 c2erm
3
A =Lxbxn
N 3
A= % x2x10 =6.67 kNm?
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S (2+3x2)
a

(ii) Slope
By Mohr’s Theorem - |
B, L - ) 804067 g 5104 ragians

El El

x10°

(80x2.67+ 6.67x3.5)

10x10°

2.37mm
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Problem

A cantilever beam 5m span carries an udl of 20 kN/m over a length of 3 m from fixed end
and two point loads of 40 kN and 30 kN at 3m and 5m from the fixed end respectively.
Determine the maximum slope and deflection at the free end using Mohr's Theorem. Take
EI'=47.05x10° kN.m".
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Given data:

span ( =5m
udl  w =20kN/m
x=3m
W =30 kN at free end

W;=40kNat€=3m
El =47.05x10° kN.m?

Required
65=2 =7

Solution:

(i) Bending Moment

Bending Moment at A due to ud!
w'_20x3*

90kN.m

2
Bending Moment at A due to load W
Wxe=30x5 =150 kN.m
Bending Moment at A due to load Wi

W.X = 40x3 =120 kN.m

Draw BMD
1
A = xbxh
2
A= % X5x150 = 375 kN.m?

40 KN 30 KN
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2 2
==xl = = x5 .33m
3 3
1
A 3 xbxh
A % X3x120 =180 kN.m?
- 2
=Zx+e-x)
x ERA
A =Lxbxn
N 3
A =%x3x90 =90 kN.m*

n
u
£Tw

xX)+(e-%) %x3)+2 =4.25m
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(ii)stope
By Mohr’s Theorem - |

e (A1)

m(nsﬂmwo):luoss:lo" radians
.05

=0.0137 radians
(iif)Deflection

Ax_ 1= - -
Bmax = Ba= E_;‘= a7 Aaxa A Aaxs)

1
= ————— [(375x3.33) + (180x4)+(90x4.25)
05310 & )+ (. (¢ )

Bmax = 49.97 x 10°m = 49.97mm




image30.png
Problem

A Simply supported beam 5m span is 200mm x 300mm of size . It carries an UDL of
SKN/m over the entire span. Calculate the Max slope & deflection by area moment
method. Take E=1.2x10°N/mm’

Given data:
ud w o =5KN/m
Span 5m
Breadth b =200mm
Depth d  =300mm
E =1.2x10° N/mm?
To find
Max Slope

Max deflectior
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Solution:
Area of BMD

2 bh
3

Bending moment = 2

_ 5
B
= 15.625kN. m

A %xz.sxlS,EZS

=26.042KN. m”
A = 26.042x10° N.mm®

Centriod of BMD.

s
Zxb
Rl

(29

X =1.563m = 1563 mm

= sx25-1563m ke
g

DEFLECTION
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Moment of inertia | = %

200300
T2

1=450x 10° mm".
Applying Mohr s theorem - I

(i)Slope =05 =8 max= —

. (26042x10)
" (1.2x10°7)@50x10°)

Slope =85 =6 max = 4.82 x 10 Radians.
Applying Mohr ‘s theorem — Il

(i) Deflection =6 6= 6= o
b7

. 26042x1.563)x10%
G )(@50x10%)

8 max =0.75mm.

X

Deflection = §





image33.png
Problem

A simply supported beam 6m long, 150mm x 300mm size carries a central point load of 40
kN. Determine the maximum slope and deflection. Take E = 1.5 x 10° N/mm>.

Given data:
span [ =6m
Load W a0kN
Wide b 50mm
Depth d  =300mm
E =15x10° N/mm*
Solution:
(i) Moment of inertia (1)
B #300°
| D100 7 6 g0 mmt
12 12
Bending Moment:
Max. B.M. % 40%6_6o knm
Area of BMD

A= area of BMD between B & C
X = Centroid from B.

A=Lxbxn
2

%xBxSO:SOkle
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=90x10° Nmm*

=2m =2x10° mm

x

'
Wi
SYEN

(ii) Stope (6)
By Mohr's theorem 1
4 90x10°
E (15x10)(337.5x10°)
04 = 05= 1.78x 10° radians.

(iif) Deflection (Smax)
By Mohr’s theorem Il

A1 -
&:E_;=E(Ax)

radians
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1

= (90x2)x10" = 3.56mm
& (15x10°)(337.5x10%) (90x2)
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Problem

A simply supported beam 8m long carries a point load of 90 kN at centre and udl of 5 kN/m
over at entire span. The size of beam is 200mm x 400mm E = 1.5 x 10° N/mm?. Determine
the maximum slope and deflection.

Given data:
Pointload W =90 kN
udl w 5kN/m
Wide b 200mm
Depth d  =400mm
E 1.5%10° N/mm*
Required:
Slope & Deflection
Solution:
i) Moment of inertia(1)
B s
M. = 1= 240 20050007y e 109 mm?
12 12
By Area Moment Method
i) Free BMD
WE _90x8
BM dueto Point load = —~ = X% - 180kN.m
2 seg?
23 sokwm

BMduetoud! = ——
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iii) Area of BMD

Area of triangle A; = %x bxh

A= %xﬂxlw =360 kN.m?

=360x10° Nmm®

2

Fx4=267m= 2.67x10° mm from B

Centroid x,

Area of Parabola A, = ~xbxh

X4x40= 106.67 kN.m*

=106.67x10° Nmm®
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5

Centroid x, = > x4=2.5m=2.5x10° mm
(iv) slope (8)
By Mohr’s theorem — |

0= 00 2= Liac]
= m [360+106.67]x10° radians
04=29.16 x 10° radians = 0.0291 radians.
(v) Deflection (Smax)
By Mohr’s theorem

- 2
Bma= R ErTR) [(360 x2.67)+(106.67 x2.5)] x10"

Bmax= 76.7 mm
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1.1 QUESTIONS for Homework

Part|
Each question consist only 2 marks

What s deflection of beam at free end for the beam carrying Point load at Free end?
What s the slope at support of a simply supported beam carrying point load at mid span?
Define: Indeterminate Structure.

Define: Slope and Deflection.

State the Maximum slope value in a simply supported beam subjected to a point load at mid
span.

Write the differential equation of flexure.

Draw the deflected shapes of any two beams.

Write the difference between roller and hinged supports.

Define elastic curve?

10. Write the equation of area moment method theorem of deflection

oW e

LRI
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Partil

Three / Five mark Questions
1. State Mohr's area moment theorems.
2. State Mohr's area moment theorems for slope and deflection.
3. State Mohr's Theorems 1 and 2 with respect to the deflected shape of a beam.
4. Acantilever beam of 3 meter length s subjected to a point load of 30 kN atits free end. Find
the deflection at the free end, using formula. if £1 = 90 x 10" N.mm2.
5. Explain slope and deflection
Part
Ten mark Questions
1. Asteel pipe S0mm internal diameter and 2mm wall thickness is simply supported on a span of

6m. If the deflection is limited to 1/325 of the span, calculate the rate of loading on the beam.
Also calculate the maximum slope at the supports. Take £ =2 x 10° N/mm’.

A cantilever beam 120 mm wide and 200 mm deep s 3 m long. What udi should the beam can
carry to produce a deflection of 8 mm at the free end. Take E =210 GN/mm”.

A cantilever of 5 meter span carries an u.d.l. of intensity 20kN/m over a length of 3m from its
fixed end and two point loads of 40kN and 30kN at 3m and 5m from the fixed end
respectively. Determine the maximum slope and deflection at the free end using Mohr's
‘Theorems if El =47.05 x 10°%Nm’.
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A cantilever beam of span 4m is subjected to an UDL of 20kN/m over the entire length and a
point load of 30 kN is acting at free end. Calculate the slope and Take E = 2 x 10° N/mm” and |
=8x10'mm".

A cantilever beam of 1 m long is of rectangular section of width 40 mm and depth 60 mm.
calculate the maximum udi that can be allowed over the entire length of the beam without

a deflection of 3.5 mm at the free end. Also calculate the maxir

um slope at the

free end. Take £ =7 x 10° N/mm’.

A beam of span 4.5m is simply supported at its ends. Calculate the maximum permitted ud! if
the maximum slope at the support is restricted to 1°. Also calculate the maximum deflection.
Take E1 = 0.80 x 10 kN’

A simply supported beam of span 4m carries an UDL of 10 kN/m over the full length and a
central point load of 20kN . Determine the maximum slope and maximum deflection by area
‘moment method. Take E=2x10°N/mm® and I=4x10°mm" and | = 8x10'mm"

A

ply supported beam of span 8m carries an UDL of 18 kN/m throughout its length and a

concentrated load of 60kN at the centre. El = 2x10° KN.m” Determine the maximum values of

slope and deflection in the beam, using Mohr’s theorem. (Formula shall not be used).
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1.2 PROPPED CANTILEVER BEAM
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1.2.1 Static Equilibrium Equations

According to the principle of statics, any structural member should satisfy the
following equilibrium conditions.
1. Algebric sum of all vertical forces should be equal to zero.

ieSv=0
Sum of upward vertical forces = Sum of down ward vertical forces.

®Tv=b)

2. Algebric sum of all horizontal forces should be equal to zero.
ieIH=0
Sum of forces towards right side = Sum of forces towards side
Ho=cH

Egray

3. Algebric sum of moments of all forces should be equal to zero.

ieIM=
- () @= a-)

Sum of anticlockwise moment:

um of clockwise moments.
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Determinate and indeterminate beams
Based on the static equilibrium equations the beams are classified as follows.
1 Statically determinate beams.
2. Statically indeterminate beams.

2.1.5. Statically determinate beams

When the reaction components of a beam can be analysed by using static equilibrium
equations (Zy =0, Zi = 0, Zu = 0) only, it is called as statically determinate beam. In which the
degree of indeterminacy is equal to zero.
‘The examples for statically determinate beams as given below
i) Cantilever beam
i) simply supported beam
i) Overhanging beam





image45.png
1.2.1. (b) statically indeterminate beam

When the reaction components of a beam cannot be analysed by using static equilibrium
equations (2, =0, Zy = 0, £y = 0) only. The beam i called as statically indeterminate beam. In
‘which the degree of indeterminacy is not equal to zero. (One or more than one).

‘The examples for statically indeterminate beams are given below

i) Propped cantilever beam i) Fixed beam i) Continuous beam

1.2.1(c) Degree of Indeterminacy

The difference between No. of unknown reaction components and No. of known equilibrium
equation is called Degree of Indeterminacy or degree of redundancy.
No.of unknown ] (leﬂknuwnusingsﬁaﬁc)

nts)

Degree of indeterminacy = !
reaction componer

equilibirum equations
1.2.1. (¢) Example

1. Cantilever beam

Unknown reaction components M & Ry =2

Know static equilibrium equation (3v = 0; 5w = 0) =2
L DI=(2-2)=0

It statically determinate beam.
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2. simply Supported beam

Unknown reaction components Rx & R = 2
Known static equilibrium equation (Su =
5 DI=(2-2)=0

It statically determinate beam.

3. Propped cantilever beam
Unknown reaction components Ry, Rs & M,

Known static equilibrium equation (v = 0; Iu = 0) = 2 ( A
DI=(3-2)=1

M=

Itis statically indeterminate beam.

4. Fixed beam
Unknown reaction components
(Ra, R, My, Mg) =4 Nos.

Known static equilibrium equations
(v=0, ZM=0) = 2

. 4-2)=2>0
Itis statically indeterminate beam.
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5. Continuous beam

Unknown reaction components
(Ra, Rs, R, Ma, Mg) =5 Nos.
Known static equilibrium equations
(Sv=0, EM=0) = 2
5DL=(5-2) =3

It s statically indeterminate beam.

1.2.3. Method of analysis of indeterminate beam

The following are the various methods of analysis of indeterminate beams.
1. Area moment method.

Column analogy method

2. Theorem of three moment method. M
3. Moment distribution method. .
4. Strain energy method. {
5. Ry
6.

Slope deflection method.
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1.2.4 Propped cantilever beam

Definition

When a cantilever beam is supported by vertical post at free end (or) near the free end is
called Propped cantilever beam. It is statically determinate beam and its degree of
indeterminacy is 1.

wim

Vs
k’.\ =2
Advantages of Propped cantilever beam
By providing propped at free end (or) nearby free end in a cantilever beam, the following are
the advantages.

1. Deflection at prop. is zero.
More shift and stable.
It can carry more load than cantilever beam.
Deflection is reduced.

Maximum +ve bending moment will be induced near the middle span.

o v s W

Value of hogging moment at support is reduced.
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1.2.5 Type of Prop.

The following are the various types of Prop. 1 T,

1. Rigid Prop. A L

2. Sinking Prop. 0

3. Elastic Prop. B
Rigid Prop

i) AtRigid prop. the upward deflection is wim

equal to downward deflection. A N
4

ii) There is no change in length of Prop.

B
iie. Upward deflection = Downward deflection.  F———¢———1
Be(+lve = Bg()ve

Sinking Prop.
At sinking Prop. a part of the deflection destroys by the load.

ie. Upward del’lzctlon} is not equal to Down load deflection due to

at Prop. End load.

Ba(+lve # Bal(-ve
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Elastic Prop.
At elastic Prop. a part of deflection destroys and also changes i length due to reaction in the
Prop. because the Prop. material is elastic.

2.3.6 Point of contra flexure

The point where the BMD changes its sign from (+)ve to (~}ve and vice versa as shown in fig. is

called point of contra flexure (or) point of inflexion. The B.M at this point is zero.

BMD
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Problem 1

A propped cantilever beam 4m long carries a central point load of 20 kN. Determine the
prop. reaction and draw SFD and BMD.

Given data:
Span ¢ =am
Load W =20KN Im Im

Solution:

i) Bending moment
Rs = Prop. Reaction
BMatAduetoRs =Rsx4
BM at A due to load = 20x2 = 40 KN.m
Draw BMD

i) Area of Bending Moment Diagram

As= —xbxh

x£xh

=267m
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x =2+§x2

iii) Prop. Reaction (Rs)

4Ax =0

A, +A X,

(8Rsx2.67)-40x3.33=0

8Rsx2.67=40x3.33

Ry=20-623
Bending Moment.
Ms=0

40 kNm®

=+333m

Ry =6.24KN

Ry = 13.76KN

Upward } {Downward
deflection| = 7 deflection
85 (+)=8s ()

ax _ax

El

4% = ax
8RBX2.67 = 40x3.33
Ra =624 KN
Reaction = Total load - Rs

Ry=20-6.24
Ra=13.76 kN

M= (6.24x2) = 12.48KN.m
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My = (6.24 x4) - (20 x2) = -15.04KN.m
Draw BMD

Point of Contra Flexure (y) :

Point of contra flexure will occur at “y” distance from B. (Similar triangles)

1248y=15.04(2-y) =0
27.52y=30.08 v "
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Problem 2

A Propped cantilever beam is 6m long. It carries an udl of 30 KN/m over its entire span.

Determine the Prop. reaction and Draw SFD and BMD.

Solution
spant =6m
udl w =30KN/m

let Ry = Prop. reaction

i) Bending moment by parts
Rs = Prop.Reaction
BMatAduetoRg=Rgx 8 =

301

6Rs

BM at A due to udl =

=-540KN.m
Draw BMD

i) Area
;= area of BMID due to Ry

%xsxsk.:mk.

2, = area of BMD due to udl

30 kN/m
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A= % X6x540 =1080 KN.m*

Centroid of BMD from B
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- (3,6] -a5m
3

i) Prop. Reaction
By Mohr’s Theorem — Il

Upward deflection due to Prop. reaction = Downward deflection due to load

18RB X4 =1080x4.5
R =67.50 KN
Reaction at A = Total load — Rs
Ry =(30X6)~67.50 =112.50 kN

Draw SFD

Maximum BM will occur at X’ distance from B

x 6-x
67.50 11250

112.50 X~ 67.50 (6 - x) =405-67.50 x

x=225mfromB
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Bending Moment.
Mg =0

Mx = Rs X 2.25 — W.x. %

(67.5x6)— (30)(%

Ma=Rgx€—

Draw BMD
Point of Contra Flexure (P) :

Point of contra flexure will occur at “y” distance from B.
M, =0

My =R.xv—w.y.§ =0

f X,
67.50xy-15y=0 112,50
y-15y" s Mu, 0

y:-a. tA ) 67{(0
V=45 (6 = i
y=212m | fromB
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1.2 QUESTIONS

Two mark questions
Define - A Prop
What s the degree of Indeterminacy of a propped cantilever beam?
Where the bending moment is maximunm in a propped cantilever subjected to ud throughout.
Find the prop action of a propped cantilever beam subjected to point load at centre.
Draw the deflected shape of the any one-type of beam
What s the degree of indeterminacy of a Propped Cantilever beam?
State the prop reaction value of a propped cantilever beam with central point loaf "W"
State the degree of indeterminacy of a fixed beam
What will be the degree of indeterminacy of a propped Cantilever? (unit 1.2)
10. What i the degree of indeterminacy of a fxed beam? (unit 1.2)
Three/Five mark Questions

1. Find the prop reaction of a propped cantilever beam subjected to a point load at

LENDNs W e

-span by
area Moment Method.

2. Draw the deflected shapes of cantilever beam, simply supported beam, propped cantilever
beam, fixed beam and continuous beam

3. Find the prop reaction of a propped cantilever beam subjected to UDL throughout the span by
area moment method.
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Ten mark Questions
1. A beam of length 6m is fixed at one end and supported by a rigid prop at the other end at the

same level. It carries an UDL of 10KN/m for a length of 4m from the fixed end. Deterr

e the prop.
reaction and draw SFD and BMD.
2. A cantilever loaded with a point load at center of the span is propped at the free end. Find the

fixed support moment and prop reaction.
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A propped cantilever of length 8m is fixed at one end and supported on a rigid prop at the other
end. It carries a point load of 40 kN at a distance of Sm from the fixed end. Determine the prop
reaction. Draw SFD and BMD.

A beam of length 6m is fixed at one end and supported by a rigid prop at the other end. It carries
an UDL of 5 kN/m for a length of 4m from the fixed end. Determine the prop reaction and draw
SFD and BMD.

A beam of length 6m is fixed at one end and supported by a rigid prop at the other end. It carries
an UDL of 30 kN/m over its length. Determine the prop reaction and draw SFD and BMD.
A Propped Cantilever of span 6m carries two equal point loads of SkN act at 2m and 4m from left

support. Determine the prop reaction and draw SFD and BMD

A beam of length 8
4KN/m throughout the length. Draw SFD and BMD.

fixed at one end and supported on a rigid unyielding prop carries an ud of

A cantilever of 6 m length is propped at 2m from the free end. It carries an udl of 12 kN/m

throughout it length. Analyse the beam using area moment method and draw the SF and BM

diagrams indicating the values at salient points.
Construct SFD and BMD for a propped cantilever of length Sm. with end prop carrying two point

loads of SKN, 10KN at 2m. and 3m. distances respectively from the fixed end.
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2.1. FIXED BEAMS — AREA MOMENT METHOD
roduction to fixed beams:

0,=0 6,=0

Fig 1 shows a simply supported beam AB carrying an external Load system.
Due to the load system a clockwise rotation at A (8,) and an anticlocky

developed.
To make these rotations (8, & 8) zero, an anticlockwise moment My at A and a clockwise moment
Ma,at 8 are to be applied.

‘These moments (Mss & Ma) can be developed by fixing the supports A & B.

‘These end moments are called “Fixed end moments” and such a beam is called a “Fixed beam”.

rota

n at B (8) are
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Advantage:
1) The fixed end moments reduce the max bending moment near the mid span.
2) Smaller ¢/s and hence economical.
3) Less deflection
4) stiffer, stronger and stable.
Disadvantages:

1) Being an indeterminate structure, additional equations, besides static equilibrium equation
are necessary for the analysis.

2) Proper care should be taken for the effects due to temperature and secondary stresses.

No of unknown reactions -a

(R, Re, Myg and Myy)

No of available static equilibrium equation 2
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Redundant reaction (excess unknown) = 2(4-2)
. Degree of indeterminacy is 2.

‘sagging and Hogging moments:

( W/m

R
o ¢ z ta
Fixed beam with u.d[

wiz < i~y W

v 12
12 hogging BMD Hogging

Here point D & E are Point of contra - flexure

ing bending moments are present.

In case of fixed beams, both hogging bending moment and sa
The fixed end moments are usually hogging in nature.

‘The mid span moment (for symmetrical loading) is sagging in nature.
At the ends, the moments are hogging and gradually reduces to zero at the point of contra-flexure and
ing moment gradually reduces to reach
ing moments at other end.

gradually increases to max s: moment and then
another point of contra-flexure and after that increasing to hog

Thus there are two point of contra-flexure.
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‘The fixed ends can be calculatea by Area moment metnoa wich uses Mohr's theorems.

In case of symmetrical loading, the fixed ends are equal (i.e.) MAB = MBA. For this case, the fixed end
moments can be calculated by applying Mohr’s theorem I.

In case of unsymmetrical loading, the fixed end moments are not equal. (i.e.) MAB is not equal to
MBA. For this case, the fixed end moments can be calculated by both the Mohr’s theorem.

) Mohe's theorems | and Il.
Derivations of expression for standard cases of fixed beams:
The following are the standard cases
1. Fixed beam with central point load (symmetrical loading).
Fixed beam with UDL throughout (symmetrical loading).
1. Fixed beam with a non-central (eccentric) point load (unsymmetrical loading).
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(1). A Fixed beam of span 6m carries a central point load of 20kN. Analyse the beam for shear, BM and
draw the SFD & BMD.
Given data:

20KkN
3m r
Iofind:

“To analyse the beam for shear & BM
Solution:
Consider Mg & Mg, as redundant reactions. (Excess unknowns)





image66.png
A c 3
RA = 20/2 = 10KN RS = 20/2 = 10KN

coral load

/2 =10kN

My, =0 (simple support)

Mpc =+R,x3-20%0=+10x3

30kNm
My, =0 (simple support)
Complete y di

Step 2: Fixed end moments: (Myo & Mas)
By Symmetry My = May= M
For symmetrically loaded fixed beam
Area of 1 diagram = Area of i diagram
Mx6 x6%30

90kNm.

M = 15kNm
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20KN

3m

3m

1! diagram

Step 3: Vertical reactions (Ra, Re):
By symmetry,
Ra= z
=20/2 =10kN( ) i

cal load
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Step 4: Shear force (V.):

20K
Mra - mcrt.g )Wm 10%%m
%= mcv x. 1o
Vi (L)
-0
VelR) =+ 1000

Ve(l) =V (R) = +10kN
VelR) =Ve()=20 =+10-20

1008
Vell) =Ve(R) =-10kN
Va[R) =0

Where L =left side, R = right side
Complete SFD.
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Step 5: Bending moment (M):
My =- Mg (=M) =- 15kNm
“M+Rx3 =-15+(10x3)
=+ 15kNm

) =-15kNm

1\% 10K

Since the BM changes its sign from ~ve to +ve from A to C and from +ve to —ve from Cto B.
. There are two points of contra ~ flexure.
Let one of the point of contra ~flexure be D at a distance X from A.

My =0
+Ruxx =My =0
+10xx-15 =0

“X  =1smfromA
By symmetry another point of contra - flexure at 1.5m from B.
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HMas= 15KN
SFD & BMD . - .

! LOADING DIAGRAH T o1
&= ot 0KN
B -
oo N
10KN.
o

1550
15X

)
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(2). A fixed beam of span 6m carries a UDL of 30kN/m throughout the span. Analyse the beam for
shear, BM and draw SFD & BMD.

Given data: n
30 KN/
y (
13 3 ¥ I 3 3
A S @

Tofing: Loading Diagram

To analyse beam for shear, BM and draw SFD & BMD.
Solution:

The given fixed beam is a symmetrically loaded fixed beam.
Step 1:  diagram (free BMD):

w/m
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 diagram is a second degree parabola with max value as WI’ /8 at mid span and

with ends 0.
ara ofdisgam - 26135
=540kNm*

Step 2: ¢’ diagram (fixed BMD):
Since the loading is symmetrical.

My Moy
‘The i diagram is a rectangle.
Area of it diagram = Mg x| = Mysx 6

=6Mu

Mas C

I\

Mza
)

Mas

Msza
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Step 3: Redundant reactions (Mas & Msa):
Consider the fixed end moments MAB & MBA as redundant reactions (excess unknown)
For symmetrically loaded fixed beam
Area of i diagram = Area of  diagram

6 M =540

My =540/6  =90kNm.

By symmetryMa = My
“Mu = Mg, =90kNM (hogging).
Step 4: Vertical reactions (R, & Ry):

By symmetry
Ry <R, <forEiond
0x6
]
90KN.
Step 5: Shear force (Vx):
Vi Ra=+90kN
Ve Ri-wl =+90-(30x3)=0
Vs Re=- 90KN
Complete SFD.

‘Step 6: Bending moment (M):
My - Mg 150kNm
Mc =+ Rax (1/2) — Mag—w x (1/2) x (1/4)

90 x (6/2) =90 - [30 x (6/2) x (6/4)]
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270-90 - 135 = 45kNm
- 150kNm

For this standard case, the point of contra - flexure D & E are 0.211 1 from the nearby support.
0.211x 6 = 1.266m from either support.
Complete BMD.

SFD & BMD:
Mas Max

( )
T T3 T 13

a4 o ¢ € s
Fixed beam with .41

SFD
T ¢ =

BMD
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QUESTIONS
‘Two mark Questions:
1) Draw the bending moment diagram for the fixed beam carrying UDL throughout.

2) What s the fixed beam and How is differ from Simply supported beam?
3) What will be slope at the fixed end of the fixed beam carrying UDL throughout ts length?

4) Draw the BMD for a fixed beam subjected to a point load at the mid-span.

5) State the maximum deflection value in a fixed beam subjected to a UDL throughout the span.
6) State any two advantages of a fixed beam.

7) Write any one advantage of a fixed beam compared to simply supported beam.
8) Define free BMD.

9) Show that the area of free BMD and fixed BMD in a fixed beam are equal.

10) Define Free BMD? (unit 2.1)

‘Three mark Questions:

1) Calculate fixed end moment and maximum deflection in a fixed beam of span 5m subjected to
a central point load of 30kN. Take E1 = 1.20 x 10° kNm?.

2) A fixed beam of 6m span subjected to a UDL of w/m over its full length. The net BM at the
centre is 30kN/m. find the value of w.

3) Show that the area of BMD and fixed BMD in a fixed beam are equal.

4) State the different method of Analysis of Indeten

inate structures.
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Ten mark Questions:

1) A fixed beam of span 9m is subjected to an UDL of 20kN/m over the entire length. It is also

carries two concentrated loads of 10kN each at 3m from the ends.

Determine the values of fixing moments.

Sketch the BMD marking the maximum values there in.

A fixed beam of 12m span carries two point loads of 60kN and 30kN at distance of 3m & 6m

from left end support respectively. Draw the SF and BM diagrams, using area moment

method.

3) Afixed beam of span 8m is subjected to an UDL of 4kN/m over a length of 4m. Symmetrically
placed at centre portion. Determine the support moments and draw the BMD.

4) Afixed beam of span ‘I carries a non-centric concentrated load of 'w’ at distance ‘2’ from the
left support and ‘b’ from the right support. Derive the expression for the fixed end moments
using Mohr's Theorems (Area-moment method).

5) A fixed beam of span Sm carries two equal point loads of 20kN each at 2m from each end.
Find the fixed end moments. Draw the SFD and BMD.

6) A fixed beam of span 6m carries a central point load of 20kN in addition to an UDL of 10kN/m
over the entire span. Calculate the fixed end moments. Draw the BMD.

7) Afixed beam of span 6m carries a central point load of 30kN and SOkN at 2m and 4m from the
left support respectively. Find the support moments and draw SFD and BMD.

8) A fixed beam of span 5m carries a central point load of 16kN. Determine the fixing moments
and draw SFD and BMD. Find the maximum central deflection.

9) A fixed beam of 6m span subjected to a two concentrated load of 30kN at a distance of 2m
from both ends. Draw SFD and BMD.

10) A fixed beam of span 8m carries an UDL of 45kN/m over the entire span. It also carries two
point loads of 150kN each at 2m from the ends. Calculate the support moments. Draw the
BMD.
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2.2. CONTINUOUS BEAMS

THEOREM OF THREE MOMENTS METHOD

Introdu

n to Continuous beams:

‘When the beam has more than two supports, it is called as continuous beam. Hogging moment will be
developed at the intermediate supports. Hence, it is siffer and stronger than other beams.

It is statically in determinate beam. The slope and deflection are less. It can carry more loads than
other type of beams. Continuous beams are economical.

The difference between number of known reaction components and number of known static equation
is called Degree of indeterminacy.

(No of known reaction components — No of known static equation)

‘The degree of indeterminacy is depend upon the end conditions, no of spans and type of supports as
iven below.
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2. Two span continuous beam:

1. Continuous beam with both end simply supported:

components (RXR; Roand My) =4
No of available static equilibrium Equations (5= 0, 5u = 0) =2

Degree of indeterminacy =(@-2 =2

2. Continuous beam with one end simply supported and other end with overhanging:

= WA
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No. of unknown reaction components (R, Rg Re & Mg) = 4
No. of available static equilibrium eqns (5,=0, Su=0) =2
Degree of indeterminacy =(a-2)=2

3. Continuous beam with one end fixed and other end simply supported:

Ra-? Rs- 2 Re-?
No. of unknown reaction components (R, Rs, R & My, M

No. of available static equilibrium eqns (5,=0, 3

) =2

Degree of indeterminacy =(5-2)=3
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Statement of Clapeyron’s Theorem of three moments:

Clapeyron's theorem states that if a beam has 'n’ supports, the end being fixed than the same number
of equations required to determining the support moments may be obtained from the consecutive
pairs of spans .e. AB - BC, BC— CD, CD - DE and 50 on.
Continuous beam ABC loaded as shown in ig. 7, >
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My, My, M are the support moments.

W () s2ms(fr ) [E54

‘Theorem of three moments equation
When,

My, 1342 My (1 +1) + Mcy

Where,

@y =area of free BMD for span AB.
rea of fixed BMD for span BC
=cgof BMD from left end (A)
g of BMD from right end (C)
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A Continuous beam ABC is Simply Supported at A and C such that AB = 6m and BC = Sm. The span AB
carries an UDL of 20kN/m and the span BC carries a point load of SOkN at the centre. Find the support

moments by using theorem of three moments draw SFD and BMD. 20k¥m kS
Solution;
. 2
1) simply Supported beam moments: om n

Considering a each span as Simply

w/m
Supported beam and dawfree VD Pziq
.
i

Span AB: PR R wif2

W 2oxe

o 90kNm

e Mase= wE/s
e
0

Using theorem of three moments method.

2) support moments: P p
Span AB & BC

C——7
o —
M
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Applying theorem of three moment equation

MAllﬂlMl(liclﬂ'M{h:rE[:::j‘f "—5]

=

0+2M, (6+5) +0

. [(;m:n)(;) St

RN 11fN

TLIEN
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A continuous beam ABC of length 8m has two equal spans. The span AB carries an UDL of 20kN/m
over its entire length and the span carries a point load of 20kN at 3m from B. Draw SFD and BMID. Take
ends A & Care simply supported. Apply the theorem of three moments.

i) Draw free BMD for each span

i) ‘Support moments:
Applying theorem of three moment equation for span AB &

Myl + 2My (1) + Mc = 6 [%5 + "—5]

=

(o)

M1+ 2Mq (141 + Mc o = 5[\5 +55] S0

Since the ends A and C are simply supported.
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T

ta¥ _wa (7

B2 from right end

Substituting in equation (1)

Muxd + 2M (4+4) + Mot = - [320+80]

0+16My+0=-400

400

M, 25kNm
Reactions:
Consider span AB
Taking moment at 8
;. FRt TS

imply supported beam with non-central load
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042058

=4Ry+25

=22 337500

Consider span BC
Taking moment about B
Rex 1+ Mg =M+ (W x a)

Rex4+25=0+(20x3)

s0-25

. 75kN

R#Ry+Re = Total load

R =Total load - (Rs + Ra)
Rq=(20x4) +20 - (33.75 + 8.75)

Rq = 57.50kN.
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Draw SFD & BMD

206N
* om on_ in) <
Ry=33.75 Re=8.75
33.75 1125 1125
A +
fm
m
15RNm
0 0

BMD
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A continuous beam ABC of span 10m is fixed at end A and simply supported at C span AB is 4m long
and carries an UDL of 30kN/m over entire span and span BC carries a point load of 60kN at 2.5m from
8. Determine the support moments by using theorem of three moments. J
Soluti

I Free BMD for each span
For span AB

Wi _3oxs®

My === 60kNm
)

Il Support moments;

Assumean

Applying Clapeyron’s three moment
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Equation for span A'A and AB

M lg + 2M (lg#y) + Mg | ndUl

For standard cases:
[2[-5] =0(Noload)

i) Simply supported with UDL, *2% =~

O
6, 5] _ 30x4
1, O

Substituting in equation (1)

Ml + 2My (0+4) + Mgxd

[0+480]
0+8M, + 4Ms = - 480
2My+ My =-120 - ()
From span AB & BC

‘Applying Clapeyron's three moment equation for span AB & BC

4m, BC

Since end Cis simply supported, Mc =0
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